
SIGGRAPH 2001 
Course 41: Advanced Issues in Level of Detail 
 
Presenters:  
 
 David Luebke, University of Virginia 

 Amitabh Varshney, University of Maryland 

 Jon Cohen, Johns Hopkins University 

 Martin Reddy, SRI International 

 Ben Watson, Northwestern University 

 
Organizer:  
 

David Luebke 
 
Slides: 
  
 Luebke (55 pages) 1 

 Varshney (53) 56 

 Cohen (22) 109 

 Reddy (28) 131 

 Watson (29) 159 

 
Supplemental Material: 
 
 Luebke: “Perceptually Driven Interactive Rendering” (10) 188 

 Luebke: “Robust View-Dependent Simplification …” (35) 198 

 Luebke: “A Developer’s Survey of Polygonal Simplification…” (12) 233 

 Varshney: “Skip Strips…” (8) 245 

 Varshney: “Adaptive Real-Time Level-of-Detail …” (23) 253 

 Varshney: “Variable-Precision Rendering” (11) 276 

 Cohen: “Concepts and Algorithms for Polygonal Simplification” (34) 287 

 Cohen: “Appearance-Preserving Simplification” (8) 321 

 Cohen: “Simplifying Polygonal Models Using Successive Mappings” (9) 329 

 Cohen: “Simplification Envelopes” (11) 338 



A1

Advanced Issues in Advanced Issues in 
Level of DetailLevel of Detail
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Course IntroductionCourse Introduction

�� Level of detailLevel of detail or or LODLOD methods provide a methods provide a 
powerful means for managing scene powerful means for managing scene 
complexity complexity 

�� Now a standard tool for  the graphics Now a standard tool for  the graphics 
developer to control rendering speeddeveloper to control rendering speed

�� This course will This course will adressadress advanced issues advanced issues 
in using and developing LOD algorithmsin using and developing LOD algorithms
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Course PrerequisitesCourse Prerequisites

�� We assume:We assume:
–– Knowledge of the basic LOD conceptKnowledge of the basic LOD concept
–– Experience with interactive graphicsExperience with interactive graphics

�� Target audienceTarget audience
–– Developers wishing to become sophisticated Developers wishing to become sophisticated 

LOD usersLOD users
–– Researchers wishing to broaden their Researchers wishing to broaden their 

knowledge of the fieldknowledge of the field

Course TopicsCourse Topics

�� Underpinnings (Underpinnings (CohenCohen, , ReddyReddy, , WatsonWatson):):
–– Classifying LOD error metricsClassifying LOD error metrics
–– Perceptual analysis of degradation of detailPerceptual analysis of degradation of detail
–– Balancing fidelity and performanceBalancing fidelity and performance
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Course TopicsCourse Topics

�� Topics in LOD creation (Topics in LOD creation (CohenCohen, , VarshneyVarshney):):
–– AppearanceAppearance--preserving simplificationpreserving simplification
–– Controlled topology reductionControlled topology reduction
–– VariableVariable--precision renderingprecision rendering

Course TopicsCourse Topics

�� LOD frameworks (LOD frameworks (LuebkeLuebke,, VarshneyVarshney):):
–– Static LODStatic LOD
–– Dynamic LODDynamic LOD
–– ViewView--dependent LODdependent LOD
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Course ScheduleCourse Schedule

8:308:30 Welcome, Introductions Welcome, Introductions LuebkeLuebke
8:508:50 FrameworksFrameworks LuebkeLuebke

Static versus viewStatic versus view--dependent LODdependent LOD

1010 BreakBreak
10:1510:15 AlgorithmsAlgorithms VarshneyVarshney

Algorithms and approaches for simplificationAlgorithms and approaches for simplification

11:3011:30 FidelityFidelity CohenCohen
Measuring error and preserving appearanceMeasuring error and preserving appearance

1212 LunchLunch

Course ScheduleCourse Schedule

1:301:30 Fidelity ContinuedFidelity Continued CohenCohen
22 Perception Perception ReddyReddy

Understanding and applying visual perceptionUnderstanding and applying visual perception

33 BreakBreak
3:153:15 TradeoffsTradeoffs WatsonWatson

Balancing fidelity and performanceBalancing fidelity and performance

4:304:30 PanelPanel AllAll
Issues, trends and important questions in LODIssues, trends and important questions in LOD

4:554:55 ConclusionConclusion LuebkeLuebke
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Frameworks: Frameworks: 
Static Vs. ViewStatic Vs. View--Dependent LODDependent LOD

�� Questions I will address:Questions I will address:
–– What is viewWhat is view--dependent simplification?dependent simplification?
–– Why is it better than traditional Why is it better than traditional 

simplification?  When is it worse?simplification?  When is it worse?
–– How is it implemented efficiently?How is it implemented efficiently?

�� Questions I will leave for the others:Questions I will leave for the others:
–– How can we control visual fidelity?How can we control visual fidelity?
–– How much simplification is appropriate?How much simplification is appropriate?

Motivation:Motivation:
Preaching To The ChoirPreaching To The Choir

�� Interactive rendering of largeInteractive rendering of large--scale scale 
geometric datasets is importantgeometric datasets is important
–– Scientific and medical visualizationScientific and medical visualization
–– Architectural and industrial CADArchitectural and industrial CAD
–– Training (military and otherwise)Training (military and otherwise)
–– EntertainmentEntertainment
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Motivation:Motivation:
Big ModelsBig Models

�� The problem:The problem:
–– Polygonal models are often too complex to Polygonal models are often too complex to 

render at interactive ratesrender at interactive rates
�� Even worse:Even worse:

–– Incredibly, models are getting bigger as fast Incredibly, models are getting bigger as fast 
as hardware is getting faster…as hardware is getting faster…

Courtesy General Dynamics, Electric Boat Div.

Big Models:Big Models:
Submarine Torpedo RoomSubmarine Torpedo Room

�� 700,000 polygons700,000 polygons
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(Anonymous)

Big Models:Big Models:
CoalCoal--fired Power Plantfired Power Plant

�� 13 million polygons13 million polygons

�� 16.7 million polygons (sort of)16.7 million polygons (sort of)

Big Models:Big Models:
Plant Ecosystem SimulationPlant Ecosystem Simulation

DeussenDeussen et al: et al: Realistic Modeling of Plant EcosystemsRealistic Modeling of Plant Ecosystems
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Big Models:Big Models:
Double Eagle Container ShipDouble Eagle Container Ship

�� 82 million polygons82 million polygons

Courtesy Newport News ShipbuildingCourtesy Newport News Shipbuilding

Big Models:Big Models:
The Digital Michelangelo ProjectThe Digital Michelangelo Project

�� David:David:
56,230,343 polygons56,230,343 polygons

�� St. Matthew:St. Matthew:
372,422,615 polygons372,422,615 polygons

Courtesy Digital Michelangelo Project
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Level of Detail: Level of Detail: 
The Basic IdeaThe Basic Idea

�� One solution:One solution:
–– Simplify the polygonal geometry of small or Simplify the polygonal geometry of small or 

distant objectsdistant objects
–– Known as Known as Level of DetailLevel of Detail or or LODLOD

�� A.k.a. polygonal simplification, geometric A.k.a. polygonal simplification, geometric 
simplification, mesh reduction, multiresolution simplification, mesh reduction, multiresolution 
modeling, …modeling, …

Courtesy Stanford 3D Scanning Repository

Create levels of detail (LODs) of objects:

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach
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Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach

�� Distant objects use coarser LODs:Distant objects use coarser LODs:

Traditional Approach: Traditional Approach: 
Static Level of DetailStatic Level of Detail

�� Traditional LOD in a nutshell:Traditional LOD in a nutshell:
–– Create LODs for each object separately Create LODs for each object separately 

in a preprocessin a preprocess
–– At runAt run--time, pick each object’s LOD time, pick each object’s LOD 

according to the object’s distance (or according to the object’s distance (or 
similar criterion)similar criterion)

�� Since LODs are created offline at fixed Since LODs are created offline at fixed 
resolutions, I refer to this as resolutions, I refer to this as Static LODStatic LOD
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Advantages of Static LODAdvantages of Static LOD

�� Simplest programming model; decouples Simplest programming model; decouples 
simplification and renderingsimplification and rendering
–– LOD creation need not address realLOD creation need not address real--time time 

rendering constraintsrendering constraints
–– RunRun--time rendering need only pick LODstime rendering need only pick LODs

Advantages of Static LODAdvantages of Static LOD

�� Fits modern graphics hardware wellFits modern graphics hardware well
–– Easy to compile each LOD into triangle Easy to compile each LOD into triangle 

strips, display lists, vertex arrays, …strips, display lists, vertex arrays, …
–– These render These render muchmuch faster than faster than 

unorganized polygons on today’s unorganized polygons on today’s 
hardware (3hardware (3--5 x)5 x)
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Disadvantages of Static LODDisadvantages of Static LOD

�� So why use anything but static LOD?So why use anything but static LOD?
�� Answer: sometimes static LOD not Answer: sometimes static LOD not 

suited for suited for drastic simplificationdrastic simplification
�� Some problem cases:Some problem cases:

–– Terrain flyoversTerrain flyovers
–– Volumetric Volumetric isosurfacesisosurfaces
–– SuperSuper--detailed range scansdetailed range scans
–– Massive CAD modelsMassive CAD models

Drastic Simplification: Drastic Simplification: 
The Problem With Large ObjectsThe Problem With Large Objects

Courtesy IBM and ACOG
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Drastic Simplification: Drastic Simplification: 
The Problem With Small ObjectsThe Problem With Small Objects

Courtesy Electric Boat

Drastic SimplificationDrastic Simplification

�� For drastic simplification:For drastic simplification:
–– Large objects must be subdividedLarge objects must be subdivided
–– Small objects must be combinedSmall objects must be combined

�� Difficult or impossible with static LODDifficult or impossible with static LOD
�� So what can we do?So what can we do?
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Dynamic Level of DetailDynamic Level of Detail

�� A departure from the traditional static A departure from the traditional static 
approach:approach:
–– Static LOD: create individual LODs in a Static LOD: create individual LODs in a 

preprocesspreprocess
–– Dynamic LOD: create data structure from Dynamic LOD: create data structure from 

which a desired level of detail can be which a desired level of detail can be 
extracted extracted at run timeat run time..

Dynamic LOD:Dynamic LOD:
AdvantagesAdvantages

�� Better granularity Better granularity ➙➙ better fidelitybetter fidelity
–– LOD is specified exactly, not chosen from a LOD is specified exactly, not chosen from a 

few prefew pre--created optionscreated options
–– Thus objects use no more polygons than Thus objects use no more polygons than 

necessary, which frees up polygons for other necessary, which frees up polygons for other 
objects objects 

–– Net result: better resource utilization, leading Net result: better resource utilization, leading 
to better overall fidelity/polygonto better overall fidelity/polygon
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Dynamic LOD:Dynamic LOD:
AdvantagesAdvantages

�� Better granularity Better granularity ➙➙ smoother transitionssmoother transitions
–– Switching between traditional LODs can Switching between traditional LODs can 

introduce visual “popping” effectintroduce visual “popping” effect
–– Dynamic LOD can adjust detail gradually and Dynamic LOD can adjust detail gradually and 

incrementally, reducing visual popsincrementally, reducing visual pops
�� Can even Can even geomorphgeomorph the finethe fine--grained grained 

simplification operations over several frames to simplification operations over several frames to 
eliminate pops [Hoppe 96, 98]eliminate pops [Hoppe 96, 98]

Dynamic LOD:Dynamic LOD:
AdvantagesAdvantages

�� Supports progressive transmissionSupports progressive transmission
–– Progressive Meshes [Hoppe 97]Progressive Meshes [Hoppe 97]
–– Progressive Forest Split Compression [Progressive Forest Split Compression [Taubin Taubin 98]98]

�� Supports Supports viewview--dependent LODdependent LOD
–– Use current view parameters to select best Use current view parameters to select best 

representation representation for the current viewfor the current view
–– Single objects may thus span several levels Single objects may thus span several levels 

of detailof detail
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ViewView--Dependent LOD: Dependent LOD: 
ExamplesExamples

�� Show nearby portions of object at higher Show nearby portions of object at higher 
resolution than distant portionsresolution than distant portions

View from eyepoint Birds-eye view

ViewView--Dependent LOD: Dependent LOD: 
ExamplesExamples

�� Show silhouette regions of object at Show silhouette regions of object at 
higher resolution than interior regionshigher resolution than interior regions
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ViewView--Dependent LOD:Dependent LOD:
ExamplesExamples

�� Show more detail where the user is Show more detail where the user is 
looking than in their peripheral vision:looking than in their peripheral vision:

34,321 triangles

ViewView--Dependent LOD:Dependent LOD:
ExamplesExamples

�� Show more detail where the user is Show more detail where the user is 
looking than in their peripheral vision:looking than in their peripheral vision:

11,726 triangles
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ViewView--Dependent LOD:Dependent LOD:
AdvantagesAdvantages

�� Even better granularityEven better granularity
–– Allocates polygons where they are most Allocates polygons where they are most 

needed, within as well as among objectsneeded, within as well as among objects
–– Enables even better overall fidelityEnables even better overall fidelity

�� Enables drastic simplification of Enables drastic simplification of 
very large objectsvery large objects
–– Example: stadium modelExample: stadium model
–– Example: terrain flyoverExample: terrain flyover

An Aside: An Aside: 
Hierarchical LODHierarchical LOD

�� ViewView--dependent LOD solves the dependent LOD solves the 
Problem With Large ObjectsProblem With Large Objects

�� Hierarchical LODHierarchical LOD can solve the can solve the 
Problem With Small ObjectsProblem With Small Objects
–– Merge objects into assembliesMerge objects into assemblies
–– At sufficient distances, simplify assemblies, At sufficient distances, simplify assemblies, 

not individual objects not individual objects 
�� Note that hierarchical LOD implies a Note that hierarchical LOD implies a 

topologytopology--modifying algorithmmodifying algorithm
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An Aside:An Aside:
Hierarchical LODHierarchical LOD

�� Hierarchical LOD dovetails nicely with Hierarchical LOD dovetails nicely with 
viewview--dependent LODdependent LOD
–– Treat theTreat the entire sceneentire scene as a single object to be as a single object to be 

simplified in viewsimplified in view--dependent fashiondependent fashion

�� Hierarchical LOD can also sit atop Hierarchical LOD can also sit atop 
traditional static LOD schemestraditional static LOD schemes
–– Imposters [Imposters [Maciel Maciel 95]95]
–– HLODsHLODs [[Erikson Erikson 01]01]

ViewView--Dependent LOD: Dependent LOD: 
AlgorithmsAlgorithms

�� Many good published algorithms:Many good published algorithms:
–– Progressive MeshesProgressive Meshes by Hoppe by Hoppe 

[SIGGRAPH 96, SIGGRAPH 97, …][SIGGRAPH 96, SIGGRAPH 97, …]

–– Merge TreesMerge Trees byby XiaXia && VarshneyVarshney [Visualization 96][Visualization 96]

–– Hierarchical Dynamic SimplificationHierarchical Dynamic Simplification by by 
Luebke & Luebke & Erikson Erikson [SIGGRAPH 97][SIGGRAPH 97]

–– MultitriangulationMultitriangulation by by DeFloriani DeFloriani et alet al
–– Others…Others…
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�� I’ll mostly describe my own workI’ll mostly describe my own work
–– Algorithm: Algorithm: VDS  VDS  Implementation: Implementation: VDSlibVDSlib
–– Similar in concept to most other algorithmsSimilar in concept to most other algorithms

Overview: Overview: 
TheThe VDS AlgorithmVDS Algorithm

Overview: Overview: 
The VDS AlgorithmThe VDS Algorithm

�� Overview of the VDS algorithm:Overview of the VDS algorithm:
–– A preprocess builds the A preprocess builds the vertex treevertex tree, , 

a hierarchical clustering of verticesa hierarchical clustering of vertices
–– At run time, clusters appear to grow and At run time, clusters appear to grow and 

shrink as the viewpoint movesshrink as the viewpoint moves
–– Clusters that become too small are Clusters that become too small are 

collapsed, filtering out some trianglescollapsed, filtering out some triangles
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Data StructuresData Structures

�� The The vertex treevertex tree
–– Represents the entire modelRepresents the entire model
–– Hierarchy of all vertices in modelHierarchy of all vertices in model
–– Queried each frame for updated sceneQueried each frame for updated scene

�� The The active triangle listactive triangle list
–– Represents the current simplificationRepresents the current simplification
–– List of triangles to be displayedList of triangles to be displayed
–– Triangles added and deleted by operations Triangles added and deleted by operations 

on vertex treeon vertex tree

The Vertex TreeThe Vertex Tree

�� Each vertex tree node Each vertex tree node supportssupports a subset a subset 
of the model verticesof the model vertices
–– Leaf nodes support a single vertex from the Leaf nodes support a single vertex from the 

original fulloriginal full--resoluton resoluton modelmodel
–– The root node supports all vertices The root node supports all vertices 

�� For each node we also assign a For each node we also assign a 
representative vertex or representative vertex or proxyproxy
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The Vertex Tree:The Vertex Tree:
Folding And UnfoldingFolding And Unfolding
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A

3

Fold Node A

Unfold Node A

�� FoldingFolding a node collapses its vertices to a node collapses its vertices to 
the proxythe proxy

�� UnfoldingUnfolding the node splits the proxy back the node splits the proxy back 
into verticesinto vertices

Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

3
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Fold Node A

Unfold Node A

Node->Subtris: triangles that disappear upon folding
Node->Livetris: triangles that just change shape

�� Two categories of triangles affected:Two categories of triangles affected:

The Vertex Tree:The Vertex Tree:
LivetrisLivetris and Subtrisand Subtris

�� The The key observationkey observation::
–– Each node’s Each node’s subtrissubtris can be computed offline can be computed offline 

to be accessed quickly at run timeto be accessed quickly at run time
–– Each node’s Each node’s livetris livetris can be maintained at run can be maintained at run 

time, or lazily evaluated upon renderingtime, or lazily evaluated upon rendering
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ViewView--Dependent Dependent 
SimplificationSimplification

�� Any runAny run--time criterion for folding and time criterion for folding and 
unfolding nodes may be usedunfolding nodes may be used

�� Examples of viewExamples of view--dependent dependent 
simplification criteria:simplification criteria:
–– ScreenspaceScreenspace error thresholderror threshold
–– Silhouette preservationSilhouette preservation
–– Triangle budget simplificationTriangle budget simplification
–– GazeGaze--directed perceptual simplification directed perceptual simplification 

(discussed by Martin later)(discussed by Martin later)

Screenspace Screenspace 
Error ThresholdError Threshold

�� Nodes chosen by projected areaNodes chosen by projected area
–– User sets screenspace size thresholdUser sets screenspace size threshold
–– Nodes which grow larger than threshold are Nodes which grow larger than threshold are 

unfoldedunfolded
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Silhouette PreservationSilhouette Preservation

�� Retain more detail near silhouettesRetain more detail near silhouettes
–– A A silhouette nodesilhouette node supports triangles on the supports triangles on the 

visual contourvisual contour
–– Use tighter Use tighter screenspacescreenspace thresholds when thresholds when 

examining silhouette examining silhouette 
nodesnodes

Triangle Budget Triangle Budget 
SimplificationSimplification

�� Minimize error within specified number of Minimize error within specified number of 
trianglestriangles
–– Sort nodes by screenspace errorSort nodes by screenspace error
–– Unfold node with greatest error, putting Unfold node with greatest error, putting 

children into sorted listchildren into sorted list
Repeat until budget is reached Repeat until budget is reached 
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ViewView--Dependent Criteria:Dependent Criteria:
Other PossibilitiesOther Possibilities

�� SpecularSpecular highlightshighlights:: XiaXia describes a fast describes a fast 
test to unfold likely nodestest to unfold likely nodes

�� Surface deviationSurface deviation: Hoppe uses an elegant : Hoppe uses an elegant 
surface deviation metric that combines surface deviation metric that combines 
silhouette preservation and silhouette preservation and screenspace screenspace 
error thresholderror threshold

ViewView--Dependent Criteria:Dependent Criteria:
Other PossibilitiesOther Possibilities

�� Sophisticated surface deviation metrics:Sophisticated surface deviation metrics:
See Jon’s talk!See Jon’s talk!

�� Sophisticated perceptual criteriaSophisticated perceptual criteria: : 
See Martin’s talk!See Martin’s talk!

�� Sophisticated temporal criteriaSophisticated temporal criteria: : 
See Ben’s talk!See Ben’s talk!
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Implementing VDS: Implementing VDS: 
OptimizationsOptimizations

�� Asynchronous simplificationAsynchronous simplification
–– Parallelize the algorithmParallelize the algorithm

�� Exploiting temporal coherenceExploiting temporal coherence
–– Scene changes slowly over timeScene changes slowly over time

�� Maintain memory coherent geometry Maintain memory coherent geometry 
–– Optimize for renderingOptimize for rendering
–– Support for outSupport for out--ofof--core renderingcore rendering

�� Algorithm partitions into two tasks:Algorithm partitions into two tasks:

�� Run them in separate processesRun them in separate processes

Simplify
Task

Render
Task

Active Triangle List

…

Asynchronous SimplificationAsynchronous Simplification

Vertex Tree
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Asynchronous SimplificationAsynchronous Simplification

�� If If SS = time to simplify, = time to simplify, RR = time to render:= time to render:
–– Single process Single process = (= (SS + + RR))
–– Pipelined Pipelined = = maxmax((SS, , RR))
–– Asynchronous Asynchronous = = RR

Temporal CoherenceTemporal Coherence

�� Exploit the fact that frameExploit the fact that frame--toto--frame frame 
changes are smallchanges are small

�� Two examples:Two examples:
–– Active triangle listActive triangle list
–– Vertex treeVertex tree
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Exploiting Exploiting 
Temporal CoherenceTemporal Coherence

�� Active triangle listActive triangle list
–– Could calculate active triangles every frameCould calculate active triangles every frame
–– But…few triangles are added or deleted But…few triangles are added or deleted 

each frameeach frame
–– Idea: make only incremental changes to an Idea: make only incremental changes to an 

active triangle listactive triangle list
�� Simple approach: doublySimple approach: doubly--linked list of triangleslinked list of triangles
�� Better: maintain coherent arrays with swappingBetter: maintain coherent arrays with swapping

Unfolded
Nodes

Boundary Nodes

Exploiting Exploiting 
Temporal CoherenceTemporal Coherence

�� Vertex TreeVertex Tree
–– Few nodes change per frameFew nodes change per frame
–– Don’t traverse whole treeDon’t traverse whole tree
–– Do local updates only Do local updates only 

at at boundary nodesboundary nodes
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Optimizing For RenderingOptimizing For Rendering

�� Idea: maintain geometry in coherent arraysIdea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
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Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F
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Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker
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Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)
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Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)
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Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

�� Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence
Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)
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Optimizing For Rendering:Optimizing For Rendering:
Vertex ArraysVertex Arrays

�� Biggest win: vertex arraysBiggest win: vertex arrays

–– Actually, keep separate parallel arrays for Actually, keep separate parallel arrays for 
rendering data (rendering data (coordscoords, colors, etc), colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!

Optimizing For Rendering:Optimizing For Rendering:
Vertex Arrays on GeForce2Vertex Arrays on GeForce2

~64,000 Vertex Torus

0

2

4

6

8

10

12

Immediate Mode Display List Vertex Arrays Per-rendering
Compiled

Vertex Arrays

Alw ays Locked
Compiled

Vertex Arrays

VAR Video
Memory (no

rew rite)

VAR AGP
Memory (no

rew rite)

VAR Regular
Memory (no

rew rite)

VAR Video
Memory

(rew ritten)

VAR AGP
Memory

(rew ritten)

VAR Regular
Memory

(rew ritten)

To
ta

l R
en

de
rin

g 
Se

co
nd

s

Triangles Trianlge Strips Quads Quad Strips

Plain old triangles Triangles using
vertex arrays

Vertex arrays
in fast memory
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OutOut--ofof--core Renderingcore Rendering

�� Coherent arrays lend themselves to outCoherent arrays lend themselves to out--
ofof--core simplification and rendering:core simplification and rendering:

…

These need to be in memory… These do not

OutOut--ofof--core Renderingcore Rendering

�� Coherent arrays lend themselves to outCoherent arrays lend themselves to out--
ofof--core simplification and rendering:core simplification and rendering:
–– Only need active portions of triangle and Only need active portions of triangle and 

node arraysnode arrays
–– Implement arrays as memoryImplement arrays as memory--mapped filesmapped files

�� Let virtual memory system manage pagingLet virtual memory system manage paging
�� A A prefetch prefetch thread walks boundary nodes, bringing thread walks boundary nodes, bringing 

their children into memory to avoid glitchestheir children into memory to avoid glitches
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Summary: Summary: 
VDS ProsVDS Pros

�� Supports drastic simplification!Supports drastic simplification!
–– ViewView--dependent;  handles the dependent;  handles the 

Problem With Large ObjectsProblem With Large Objects
–– Hierarchical; handles the Hierarchical; handles the 

Problem With Small ObjectsProblem With Small Objects
–– Robust; does not require (or preserve) Robust; does not require (or preserve) 

mesh topologymesh topology

Summary: Summary: 
VDS ProsVDS Pros

�� Rendering can be implemented efficiently Rendering can be implemented efficiently 
using vertex arraysusing vertex arrays

�� Supports rendering of models much Supports rendering of models much 
larger than main memorylarger than main memory
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Summary: Summary: 
VDS ConsVDS Cons

�� Increases CPU load Increases CPU load 
�� Fastest rendering mode currently Fastest rendering mode currently 

restricted to 65K vertices (April 2001) restricted to 65K vertices (April 2001) 

Summary: Summary: 
VDS ConsVDS Cons

�� Currently nothing to prevent Currently nothing to prevent mesh mesh 
foldoversfoldovers::

10

54

6

1

3

7

2
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Summary: Summary: 
VDS ConsVDS Cons

�� Currently nothing to prevent Currently nothing to prevent mesh mesh 
foldoversfoldovers::

8

Summary: Summary: 
VDS ConsVDS Cons

�� Currently nothing to prevent Currently nothing to prevent mesh mesh 
foldoversfoldovers::

10

54

6
3

2
8

9 A



A47

Summary: Summary: 
VDS ConsVDS Cons

�� Currently nothing to prevent Currently nothing to prevent mesh mesh 
foldoversfoldovers
–– These can be very distracting artifactsThese can be very distracting artifacts
–– Could be made part of the viewCould be made part of the view--dependent dependent 

simplification criterion, though…simplification criterion, though…

ViewView--Dependent Versus Dependent Versus 
Static LODStatic LOD

�� ViewView--dependent LOD is superior to dependent LOD is superior to 
traditional static LOD when:traditional static LOD when:
–– Models contain very large individual objects Models contain very large individual objects 

(e.g., terrains)(e.g., terrains)
–– Simplification must be completely automatic Simplification must be completely automatic 

(e.g., complex CAD models)(e.g., complex CAD models)
–– Experimenting with viewExperimenting with view--dependent dependent 

simplification criteriasimplification criteria
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ViewView--Dependent Versus Dependent Versus 
Static LODStatic LOD

�� Static LOD is often the better choice:Static LOD is often the better choice:
–– Simplest programming modelSimplest programming model
–– Reduced runReduced run--time CPU loadtime CPU load
–– Easier to leverage hardware:Easier to leverage hardware:

�� Compile Compile LODsLODs into vertex arrays/display listsinto vertex arrays/display lists
�� Stripe LODs into triangle stripsStripe LODs into triangle strips
�� Utilize vertex caches and suchUtilize vertex caches and such

ViewView--Dependent Versus Dependent Versus 
Static LODStatic LOD

�� Applications that may want to use:Applications that may want to use:
–– Static LODStatic LOD

�� Video gamesVideo games
�� SimulatorsSimulators
�� Many walkthroughMany walkthrough--style demosstyle demos

–– Dynamic and viewDynamic and view--dependent LODdependent LOD
�� CAD design review toolsCAD design review tools
�� Medical & scientific visualization toolkitsMedical & scientific visualization toolkits
�� Terrain flyoversTerrain flyovers
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�� Implementation: Implementation: VDSlibVDSlib
–– A publicA public--domain viewdomain view--dependent dependent 

simplification and rendering packagesimplification and rendering package
–– Flexible C++ interface lets users:Flexible C++ interface lets users:

�� Construct vertex trees for objects or scenesConstruct vertex trees for objects or scenes
�� Specify with callbacks how to simplify, cull, Specify with callbacks how to simplify, cull, 

and render themand render them
–– Available at Available at http://http://vdslibvdslib..virginiavirginia..eduedu

VDSlibVDSlib

VDSlib:VDSlib:
Ongoing WorkOngoing Work

�� Ongoing research projects using VDSlib:Ongoing research projects using VDSlib:
–– OutOut--ofof--core LOD for interactive rendering of core LOD for interactive rendering of 

trulytruly massive modelsmassive models
–– PerceptuallyPerceptually--guided viewguided view--dependent LOD, dependent LOD, 

including gazeincluding gaze--directed techniquesdirected techniques
–– NonNon--photorealistic photorealistic rendering using VDSlib as rendering using VDSlib as 

a frameworka framework
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The EndThe End

Appendix:Appendix:
Related WorkRelated Work

�� Hoppe: Progressive Meshes (SIGGRAPH Hoppe: Progressive Meshes (SIGGRAPH 
96, 97, other papers)96, 97, other papers)
–– Edge collapse vs. vertex mergingEdge collapse vs. vertex merging
–– Pros:Pros:

�� Dynamic, viewDynamic, view--dependent simplificationdependent simplification
�� Elegant scheme for mesh attributesElegant scheme for mesh attributes

–– Cons:Cons:
�� Requires clean mesh topologyRequires clean mesh topology
�� Slow preprocess (though not implicit to PM)Slow preprocess (though not implicit to PM)
�� Still perStill per--object LODobject LOD
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Appendix: Appendix: 
Web ResourcesWeb Resources

�� VDSlib: VDSlib: http://http://vdslibvdslib..virginiavirginia..eduedu
–– A publicA public--domain viewdomain view--dependent simplification librarydependent simplification library

�� My work on viewMy work on view--dependent simplification: dependent simplification: 
http://www.http://www.cscs..virginiavirginia..eduedu/~/~luebkeluebke/simplification.html/simplification.html
–– A SIGGRAPH paperA SIGGRAPH paper
–– My dissertation on VDSMy dissertation on VDS
–– The attached tech report on VDS for CAD applicationsThe attached tech report on VDS for CAD applications
–– A survey of LOD algorithms written for graphics developersA survey of LOD algorithms written for graphics developers

Appendix: Appendix: 
Web ResourcesWeb Resources

�� Hughes Hoppe’s work on progressive meshes:Hughes Hoppe’s work on progressive meshes:
http://www.research.http://www.research.microsoftmicrosoft.com/~.com/~hhoppehhoppe
–– 2 SIGGRAPH papers2 SIGGRAPH papers
–– A paper on efficient implementation of progressive meshesA paper on efficient implementation of progressive meshes
–– A paper on terrain rendering using progressive meshesA paper on terrain rendering using progressive meshes
–– Much more…Much more…

�� Michael Garland’s work on quadric error metrics:Michael Garland’s work on quadric error metrics:
http://www.http://www.uiucuiuc..eduedu/~garland/~garland
–– A SIGGRAPH paperA SIGGRAPH paper
–– Garland’s dissertation on QEMGarland’s dissertation on QEM
–– A followA follow--up paper extending QEM to surface attributesup paper extending QEM to surface attributes
–– Public domain code for generating LODs with QEMPublic domain code for generating LODs with QEM
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Appendix: Appendix: 
Web ResourcesWeb Resources

�� The MultiThe Multi--TesselationTesselation (MT) home page:(MT) home page:
http://www.http://www.disidisi..unigeunige.it/person/.it/person/MagilloPMagilloP/MT//MT/
–– A different approach to dynamic and viewA different approach to dynamic and view--dependent dependent 

simplification by Desimplification by De FlorianiFloriani, , MagilloMagillo, and , and PuppoPuppo. . 
–– Includes code and sample softwareIncludes code and sample software

�� David Luebke.  David Luebke.  Robust ViewRobust View--Dependent Simplification Dependent Simplification 
For Very LargeFor Very Large--Scale CAD VisualizationScale CAD Visualization,  University of ,  University of 
Virginia Tech Report CSVirginia Tech Report CS--9999--33.33.
–– An updated version of the original SIGGRAPH ‘97 paper An updated version of the original SIGGRAPH ‘97 paper 

describing the viewdescribing the view--dependent simplification framework dependent simplification framework 
presented here.  presented here.  

Appendix: Appendix: 
Attached PapersAttached Papers
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�� Benjamin Benjamin HallenHallen, David Luebke.  , David Luebke.  Perceptually Perceptually 
Driven Interactive RenderingDriven Interactive Rendering,  University of Virginia ,  University of Virginia 
Tech Report CSTech Report CS--0101--01.01.
–– Describes ongoing work applying perceptual metrics (see Describes ongoing work applying perceptual metrics (see 

Martin’s talk) to viewMartin’s talk) to view--dependent polygonal simplification.  dependent polygonal simplification.  

Appendix: Appendix: 
Attached PapersAttached Papers

The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

�� Computing Computing livetrislivetris and and subtrissubtris::
–– nodenode-->>livetrislivetris = triangles with exactly = triangles with exactly 

one corner vertex supported by nodeone corner vertex supported by node
–– nodenode-->>subtrissubtris = triangles with:= triangles with:

�� Two or three corners in different Two or three corners in different subnodes subnodes 
�� No two corners in the same No two corners in the same subnodesubnode
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The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

A Node

Subnodes

The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

This is a 
livetri of 
the node
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The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

This is a 
subtri of 
the node

The Vertex Tree:The Vertex Tree:
LivetrisLivetris and and SubtrisSubtris

This is neither. 

It’s a subtri 
of this subnode
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Algorithms for Algorithms for 
Generalized Generalized LODsLODs

Amitabh VarshneyAmitabh Varshney
Department of Computer ScienceDepartment of Computer Science

University of Maryland at College ParkUniversity of Maryland at College Park

OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications

�� Implementing ViewImplementing View--dependent dependent LODsLODs

�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs

�� VariableVariable--Precision RenderingPrecision Rendering
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OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications
–– Static Simplification of TopologyStatic Simplification of Topology
–– ViewView--dependent Simplification of Topologydependent Simplification of Topology

�� Implementing ViewImplementing View--dependentdependent LODsLODs
�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs
�� VariableVariable--Precision RenderingPrecision Rendering

LOD Algorithms ClassificationLOD Algorithms Classification

Rossignac & Borrel 93,
He et al 96,

El-Sana & Varshney 97
Schroeder 97,

Garland & Heckbert 97

Rossignac & Borrel 93,
He et al 96,

El-Sana & Varshney 97
Schroeder 97,

Garland & Heckbert 97

Luebke & Erikson 97
El-Sana & Varshney 99
Luebke & Erikson 97

El-Sana & Varshney 99

View-IndependentView-Independent View-DependentView-Dependent

Topology 
Preserving
Topology 
Preserving

Topology
Simplifying
Topology

Simplifying

Turk 92, 
Schroeder et al 92

Cohen et al 96, 
Hoppe 96,

Cignoni et al 98 

Xia & Varshney 96,
Hoppe 97,

De Floriani et al 98
Gueziec et al 98,

Klein et al 98
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Geometry & Topology Geometry & Topology 
SimplificationsSimplifications

�� Geometry SimplificationGeometry Simplification
–– Reducing the number of geometric primitives Reducing the number of geometric primitives 

(vertices, edges, triangles)(vertices, edges, triangles)
�� Topology SimplificationTopology Simplification

–– Reducing the number of holes, tunnels, cavitiesReducing the number of holes, tunnels, cavities
�� Geometry + Topology SimplificationGeometry + Topology Simplification

–– Aggressive simplificationsAggressive simplifications
–– May not be suitable for some applicationsMay not be suitable for some applications

Why Static Simplification of Why Static Simplification of 
Topology?Topology?
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Static Simplification of Static Simplification of 
TopologyTopology

Local and Global AlgorithmsLocal and Global Algorithms

�� Collapsing vertex pairs / virtual edgesCollapsing vertex pairs / virtual edges
–– Schroeder, Schroeder, Visualization 97Visualization 97

–– Popovic Popovic and Hoppe, and Hoppe, Siggraph Siggraph 9797

–– Garland and Garland and HeckbertHeckbert, , Siggraph Siggraph 9797

�� Collapsing primitives in a cellCollapsing primitives in a cell
–– Rossignac Rossignac and and BorrelBorrel, , Modeling in Comp. Graphics 93Modeling in Comp. Graphics 93

–– Luebke andLuebke and EriksonErikson,, SiggraphSiggraph 9797
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Local and Global AlgorithmsLocal and Global Algorithms

�� LowLow--pass filtering in Volumetric domainpass filtering in Volumetric domain
–– He He et al.,et al., Visualization 95Visualization 95

�� Rolling a sphere (LRolling a sphere (L22), cube (L), cube (L11, L, L∞∞))
–– ElEl--SanaSana and Varshney, and Varshney, Visualization 97Visualization 97

Our Approach to Static Our Approach to Static 
Topology SimplificationTopology Simplification

�� Similar to Similar to αα--HullsHulls
�� Roll a sphere of radius Roll a sphere of radius αα over the objectover the object

�� FillFill--up regions inaccessible to the sphereup regions inaccessible to the sphere

El-Sana and Varshney, Visualization 97, IEEE TVCG 98



6

Alpha PrismsAlpha Prisms

�� Alpha prismAlpha prism
–– Convolve triangle with Convolve triangle with αα--side side 

cube (Lcube (L∞∞ metric)metric)
–– Convex polyhedronConvex polyhedron

�� Compute union of Compute union of αα prismsprisms
–– FillsFills--up all features less than up all features less than αα

�� Generate the surface from the unionGenerate the surface from the union

ResultsResults



7

Concavities and ConvexitiesConcavities and Convexities

ConcavityConcavity ConvexityConvexity

ResultsResults

OriginalOriginal FinalFinal
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OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications
–– Static Simplification of TopologyStatic Simplification of Topology
–– ViewView--dependent Simplification of Topologydependent Simplification of Topology

�� Implementing ViewImplementing View--dependentdependent LODsLODs
�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs
�� VariableVariable--Precision RenderingPrecision Rendering

IlluminationIllumination-- andand
ViewView--Dependent DetailDependent Detail

8192 triangles8192 triangles

537 triangles537 triangles
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ViewView--Dependent Dependent 
Topology SimplificationTopology Simplification

�� Aggressive simplificationAggressive simplification

�� Varied topology simplificationVaried topology simplification
�� Connect different objectsConnect different objects

�� Efficient foldEfficient fold--over prevention policyover prevention policy
�� RealReal--timetime

Edge and VertexEdge and Vertex--Pair Pair 
CollapsesCollapses

H

G
P

VertexVertex--Pair CollapsePair Collapse

Vertex SplitVertex Split

H

G
P

Edge CollapseEdge Collapse

Vertex SplitVertex Split

EdgeEdge CollapseCollapse

VertexVertex--Pair CollapsePair Collapse
(Virtual Edge)(Virtual Edge)
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Simplifying GenusSimplifying Genus

�� Allow virtual edge collapsesAllow virtual edge collapses
�� Limit potentially O(nLimit potentially O(n22) virtual edges) virtual edges
�� Typical constraints:Typical constraints:

–– Delaunay Delaunay edgesedges
–– Edges that span neighboring cells in a spatial    Edges that span neighboring cells in a spatial    

subdivision: subdivision: octreeoctree, grids, etc., grids, etc.
–– Maximum edge lengthMaximum edge length

Virtual EdgesVirtual Edges

�� Subdivide the dataset into patchesSubdivide the dataset into patches
–– Initialize each triangle to a patchInitialize each triangle to a patch
–– Merge two patches that:Merge two patches that:

�� Share at least one edgeShare at least one edge
�� Their normals differ less than thresholdTheir normals differ less than threshold

�� Construct Construct DelaunayDelaunay triangulation using triangulation using 
only the vertices on  patch boundariesonly the vertices on  patch boundaries
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Vertex CollapseVertex Collapse

u v

d

j

c

b
ig

h

e
f

a

u:{i, e, h, g, f, a} v:{d, b, c, j, i, a}

P

d

j

c

bg

h

e

f

P:{e, h, g, f, d, b, c, j}
u:{i:0,a:5} v:{i:4,a:5}

View Dependence TreeView Dependence Tree
�� Use an appropriate distance metricUse an appropriate distance metric
�� Construct the set of virtual edgesConstruct the set of virtual edges
�� Build a heap of all the edges (virtual and Build a heap of all the edges (virtual and 

real) using the given metric.real) using the given metric.
�� While not empty (heap)While not empty (heap)

–– Extract (minimum) edgeExtract (minimum) edge
–– Collapse its two vertices Collapse its two vertices 
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View Dependence TreeView Dependence Tree

Low Detail

High Detail

�� Hierarchy of vertexHierarchy of vertex--pair collapsespair collapses
�� Different levels in this hierarchy represent Different levels in this hierarchy represent 

different levels of detaildifferent levels of detail
�� Construct the hierarchy offlineConstruct the hierarchy offline
�� RunRun--time navigation involves:time navigation involves:

–– Vertex split: RefinementVertex split: Refinement
–– Vertex collapse: SimplificationVertex collapse: Simplification

Display TrianglesDisplay Triangles

�� Initialized to triangles adjacent to rootsInitialized to triangles adjacent to roots
�� Add trianglesAdd triangles

–– Vertex SplitVertex Split
�� Remove trianglesRemove triangles

–– Edge CollapseEdge Collapse
�� Update triangleUpdate triangle

–– Vertex SplitVertex Split
–– Edge CollapseEdge Collapse
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Simplification Factors Simplification Factors 

�� ScreenScreen--space projectionspace projection
�� Local illuminationLocal illumination
�� Visibility cullingVisibility culling
�� Silhouette boundariesSilhouette boundaries
�� LOD transfer functionLOD transfer function
�� Prevent foldPrevent fold--oversovers

–– Implicit DependenciesImplicit Dependencies

RunRun--time Traversaltime Traversal
forfor each active node each active node nn dodo

switchswitch((NextStatNextStat(n)(n)){ ){ 
casecase SPLITSPLIT :: ifif ( ( CanSplitCanSplit(n)(n)))

Split(n);Split(n);
casecase MERGEMERGE: : ifif ( ( CanMergeCanMerge(n) && (n) && 

CanMergeCanMerge(Sibling(n)(Sibling(n)))
Merge(n);Merge(n);

casecase STAY    : // No Change on the activeSTAY    : // No Change on the active--nodes list }     nodes list }     
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ResultsResults

13.5K tris

2.0K tris 200 tris

8.2K tris

ResultsResults

CloseClose FarFar
El-Sana and Varshney, Eurographics 99
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ResultsResults

Original (340K tris)Original (340K tris) Simplified (49K tris)Simplified (49K tris)
Auxilliary Machine Room DatasetAuxilliary Machine Room Dataset

Ordering Geometry and Ordering Geometry and 
Topology SimplificationsTopology Simplifications

�� GeometryGeometry--SimplificationSimplification--FirstFirst
–– TopologyTopology--preserving geometry simplificationpreserving geometry simplification
–– Topology simplificationTopology simplification

�� Equal PreferenceEqual Preference
–– Treat TopologyTreat Topology--preserving and Topologypreserving and Topology-- reducing reducing 

simplifications equallysimplifications equally
–– Distance metrics that consider local surface normals Distance metrics that consider local surface normals 

withwith vertex coordinates fare better  vertex coordinates fare better  
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Distance Function with Distance Function with 
NormalsNormals

Define Eye Normal as opposite of view direction 
Define distance to use vertex coordinates and normals
Define Eye Normal as opposite of view direction 
Define distance to use vertex coordinates and normals

�� Backface Backface SimplificationSimplification
–– Backfacing Backfacing triangles are triangles are farther farther awayaway

�� FoveationFoveation/View Frustum Detail/View Frustum Detail
–– Triangles inside the fieldTriangles inside the field--ofof--view are view are closercloser

�� IlluminationIllumination
–– Regions with high diffuse illumination are Regions with high diffuse illumination are closercloser

Foveation Foveation ResultsResults

El-Sana and Varshney, Eurographics 99
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OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications
�� Implementing ViewImplementing View--dependent dependent LODsLODs

–– Explicit and Implicit DependenciesExplicit and Implicit Dependencies
–– Maintaining triangle stripsMaintaining triangle strips

�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs
�� VariableVariable--Precision RenderingPrecision Rendering

Mesh Folding ProblemMesh Folding Problem

A

D

B

C

v1

v1 v1

v1
v2

v2

v4

v4 v4

v4

v3v3
(v2,v1)

(v3,v4) (v3,v4)
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Explicit DependenciesExplicit Dependencies

a

b
c

Edge CollapseEdge Collapse

Vertex SplitVertex Split

v0

v2

v1

vk

v0

vk

v2

v1

Neighborhood of an edge collapse is determined 
and fixed during preprocessing and used for validity 
checks at run-time

Explicit DependenciesExplicit Dependencies

�� Vertex splitVertex split
–– Vertex Vertex cc can split to can split to (a, b)(a, b) only if vertices only if vertices vv00 , v, v11 ,, …… vvkk are are 

present and adjacent to present and adjacent to c c at runat run--time.time.
�� VertexVertex--pair collapsepair collapse

–– VertexVertex--pair pair (a, b)(a, b) can collapse to vertex can collapse to vertex cc only when all the only when all the 
vertices vertices vv00 , v, v11 ,, …… vvkk are present and adjacent to are present and adjacent to (a, b).(a, b).

a

b

Edge CollapseEdge Collapse

Vertex SplitVertex Split

v0

v2

v1
vk c

v0

vk

v2

v1
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Motivation for Implicit Motivation for Implicit 
DependenciesDependencies

5 3

6 2

1

4

9

10 7

8
5 3

6 2

1

4

11
7

8

10

9

5 3

6 2

1

4

11
10

9

12

7

8 5 3

6 2

1

4

13
10

9

7

8

1211

(9,10) 11

(7,8) 12 (11,12)  13

Implicit DependenciesImplicit Dependencies

�� ObservationsObservations
–– Collapsibility graph is a Directed Collapsibility graph is a Directed Acyclic Acyclic GraphGraph
–– Validity check involves determining the age of a node Validity check involves determining the age of a node 

relative to its neighborsrelative to its neighbors

�� SolutionSolution
–– Each node is assigned a unique integer asEach node is assigned a unique integer as idid
–– Assign new nodes progressively increasing idAssign new nodes progressively increasing id--numbernumber
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Implicit DependenciesImplicit Dependencies

�� VertexVertex vv can split if:can split if:
–– Its Its idid is greater than the is greater than the idid of all its neighborsof all its neighbors

�� VertexVertex--pair pair (u, v)(u, v) can collapse to can collapse to w w if:if:
–– w w ’s ’s idid is less than the is less than the idid of the parents of the of the parents of the 

neighbors of the two vertices (neighbors of the two vertices (uu,,vv))

Implicit DependenciesImplicit Dependencies
�� Vertex needs to maintain only two values:Vertex needs to maintain only two values:

–– Max ID of all its neighborsMax ID of all its neighbors
–– Min ID of parents of all its neighborsMin ID of parents of all its neighbors

�� RunRun--time checks become constant timetime checks become constant time
–– check against the above two values instead of all check against the above two values instead of all 

neighbors neighbors 
�� Localized memory accessesLocalized memory accesses

–– EgEg: Stanford Dragon (871K triangles, 874K nodes) : Stanford Dragon (871K triangles, 874K nodes) 
�� avgavg memory access distance for dependency checks comes down memory access distance for dependency checks comes down 

to ~1 byte from 14 MB to ~1 byte from 14 MB 
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OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications
�� Implementing ViewImplementing View--dependent dependent LODsLODs

–– Explicit and Implicit DependenciesExplicit and Implicit Dependencies
–– Maintaining triangle stripsMaintaining triangle strips

�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs
�� VariableVariable--Precision RenderingPrecision Rendering

Recent Research on Recent Research on 
Triangle StripsTriangle Strips

AkeleyAkeley, , HaeberliHaeberli, Burns, , Burns, 1990 1990 DeeringDeering, , Siggraph Siggraph 9595

ArkinArkin et al. et al. Visual Computer 96Visual Computer 96 BarBar--Yehuda Yehuda & & GotsmanGotsman, , ACM TOG 96ACM TOG 96

Evans, Evans, SkienaSkiena, Varshney,, Varshney,Visualization 96Visualization 96 Chow, Chow, Visualization 97Visualization 97

DuchaineauDuchaineau et al., et al., Visualization 97Visualization 97 SpeckmannSpeckmann && SnoeyinkSnoeyink, , CCCG 97CCCG 97

GumholdGumhold && StrasserStrasser,, SiggraphSiggraph 9898 TaubinTaubin et al., et al., SiggraphSiggraph 9898

ElEl--SanaSana,, AzanliAzanli, Varshney, , Varshney, Visualization 99Visualization 99 Hoppe,Hoppe, SiggraphSiggraph 9999

XiangXiang, Held, Mitchell, , Held, Mitchell, I3D I3D 9999 VelhoVelho et al., et al., Visual Computer 99Visual Computer 99
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Triangle Strip Triangle Strip 

aa

bb

cc ee

dd

Triangles: (Triangles: (abcabc), (), (bcdbcd), (), (cdecde))
Triangle Strip: Triangle Strip: abcdeabcde

Generalized Triangle StripsGeneralized Triangle Strips

Triangle Strip: a b c d Triangle Strip: a b c d (swap)(swap) e fe f
a b c d a b c d cc e fe f

Repeating vertices  changes directionRepeating vertices  changes direction

aa

bb

cc ee

dd

ff
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Triangle Strips with Triangle Strips with LODsLODs

�� Triangle stripsTriangle strips
–– 2X speedup2X speedup
–– Hardware / Software supportHardware / Software support

�� Static Static LODsLODs
–– OffOff--line computation of triangle strips per LODline computation of triangle strips per LOD

�� ViewView--dependent simplificationdependent simplification
–– Connectivity changes every frameConnectivity changes every frame
–– Requires runRequires run--time update of triangle stripstime update of triangle strips

Edge Collapse in a Edge Collapse in a 
Triangle StripTriangle Strip

Repeating vertices can represent edge collapsesRepeating vertices can represent edge collapses

aa

bb

cc ee

dd ff

aa cc ee

b,db,d ff

((abcdefabcdef))

((abcbefabcbef))
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Merge TreeMerge Tree

Merge TreeMesh
9

1

2
5

6

7

810

3 4

1 2

1

3 4

3

5 6

5

7 8

7

9 10

9

1 5

1

Following Parent PointersFollowing Parent Pointers

1 2

1

3 4

3

5 6

5

7 8

7

9 10

9

1 5

1

�� Replace each Triangle Strip vertex by its Replace each Triangle Strip vertex by its 
closest active ancestorclosest active ancestor

�� Need efficient pointer hoppingNeed efficient pointer hopping
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Skip ListsSkip Lists

�� Pugh [CACM 1990]Pugh [CACM 1990]
�� Probabilistic balancingProbabilistic balancing
�� Fast searchesFast searches
�� Compressed treesCompressed trees

2 7 9 11 15 31 61 96

NIL

Skip Strip Data StructureSkip Strip Data Structure

�� Array of Skip Strip NodesArray of Skip Strip Nodes
�� MergeMerge

–– Increment p Increment p 
–– Increment c Increment c 

�� SplitSplit
–– Decrement p Decrement p 
–– Decrement c Decrement c 

c pVertex Info

c pVertex Info

c pVertex Info

c pVertex Info

c pVertex Info

•••

Collapse 1

Collapse 2

Collapse 3

Log nth Collapse
•
•
•
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Building a Skip StripBuilding a Skip Strip

1 2

1

3 4

3

1

c p4
c p3
c p2
c p1

Building a Skip StripBuilding a Skip Strip

1 2

1

3 4

3

1

c p4
c p3
c p2
c p1
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Building a Skip StripBuilding a Skip Strip

1 2

1

3 4

3

1

c p4
c p3
c p2
c p1

Skip Strips with Skip Strips with LODsLODs

99

11

22
55

66

77

881010

33 44
Triangle Strip A (7 6 4 5 3 2 1)Triangle Strip A (7 6 4 5 3 2 1)

Triangle Strip B (1 10  3  9  4  8  7)Triangle Strip B (1 10  3  9  4  8  7)
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Skip Strip ExampleSkip Strip Example

1
2
3
4
5
6
7
8
9

10
Highest Resolution

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

1 5

Triangle Strip A: 7 6 4 5 3 2 1 Triangle Strip A: 7 6 4 5 3 2 1 
Display  Strip A: 7 6 4 5 3 2 1Display  Strip A: 7 6 4 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7 Triangle Strip B: 1 10 3 9 4 8 7 
Display  Strip B: 1 10 3 9 4 8 7Display  Strip B: 1 10 3 9 4 8 7

Skip Strip ExampleSkip Strip Example

1
2
3
4
5
6
7
8
9

10
Lower Resolution

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

1 5

Triangle Strip A: 7 6 4 5 3 2 1 Triangle Strip A: 7 6 4 5 3 2 1 
Display  Strip A: Display  Strip A: 5 55 5 4 5 3 2 14 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7 Triangle Strip B: 1 10 3 9 4 8 7 
Display  Strip B: 1 10 3 9 4 Display  Strip B: 1 10 3 9 4 5 55 5
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Skip Strip ExampleSkip Strip Example

1
2
3
4
5
6
7
8
9

10

Triangle Strip A: 7 6 4 5 3 2 1 Triangle Strip A: 7 6 4 5 3 2 1 
Display  Strip A: Display  Strip A: 5 55 5 4 5 3 2 14 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7 Triangle Strip B: 1 10 3 9 4 8 7 
Display  Strip B: 1 10 3 9 4 Display  Strip B: 1 10 3 9 4 5 55 5

Lower Resolution

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

1 5

Skip Strip ExampleSkip Strip Example

1
2
3
4
5
6
7
8
9

10

Triangle Strip A: 7 6 4 5 3 2 1 Triangle Strip A: 7 6 4 5 3 2 1 
Display  Strip A: Display  Strip A: 5 55 5 4 5 3 2 14 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7 Triangle Strip B: 1 10 3 9 4 8 7 
Display  Strip B: 1 10 3 9 4 Display  Strip B: 1 10 3 9 4 5 55 5

Lower Resolution

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

1 5
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Optimized Skip Strip ExampleOptimized Skip Strip Example

1
2
3
4
5
6
7
8
9

10

Triangle Strip A: 7 6 4 5 3 2 1 Triangle Strip A: 7 6 4 5 3 2 1 
Display  Strip A: Display  Strip A: 5 55 5 4 5 3 2 14 5 3 2 1
Triangle Strip B: 1 10 3 9 4 8 7 Triangle Strip B: 1 10 3 9 4 8 7 
Display  Strip B: 1 10 3 9 4 Display  Strip B: 1 10 3 9 4 5 55 5

Lower Resolution

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

1 5

RealReal--Time DisplayTime Display

�� Determine the display verticesDetermine the display vertices

�� Determine the display stripsDetermine the display strips
–– Determine which strips have changed Determine which strips have changed 
–– Traverse the changed triangle stripsTraverse the changed triangle strips
–– Follow Skip Strip pointers to get appropriate ancestorsFollow Skip Strip pointers to get appropriate ancestors
–– Remove redundant verticesRemove redundant vertices
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Efficient SkippingEfficient Skipping

�� Reduce the traversed nonReduce the traversed non--active verticesactive vertices
–– Compress the traversed pathsCompress the traversed paths
–– Update the compressed paths in lazy fashionUpdate the compressed paths in lazy fashion
–– Cache the active path indexCache the active path index

�� EfficiencyEfficiency
–– We use only We use only O(log log n)O(log log n) jumpsjumps

Results: TerrainResults: Terrain

255K255K tristris 32K 32K tristris

255K 255K tristris 522K522K tristris
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Results: BunnyResults: Bunny

5K 5K tristris30K30K tristris

30K 30K tristris 65K65K tristris

El-Sana and Varshney, Visualization 99

Auxiliary Machine RoomAuxiliary Machine Room

65K tris 65K tris

170K tris 340K tris

El-Sana and Varshney, Visualization 99



33

ResultsResults

�� Skip Strips make execution of split and merge         Skip Strips make execution of split and merge         
operations more efficientoperations more efficient
�� Applicable to any hierarchical vertex schemeApplicable to any hierarchical vertex scheme
�� Four our four sample datasets:Four our four sample datasets:

–– Skip Strips provided ~ 1.5 to 2.0 X  improvement over Skip Strips provided ~ 1.5 to 2.0 X  improvement over 
sending raw viewsending raw view--dependent trianglesdependent triangles
–– Skip Strips provided ~ 1.6 to 1.7 X improvement over perSkip Strips provided ~ 1.6 to 1.7 X improvement over per--
frame greedy triangle strip generationframe greedy triangle strip generation

OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications
�� Implementing ViewImplementing View--dependent dependent LODsLODs
�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs

–– Mesh PartitioningMesh Partitioning
–– Load BalancingLoad Balancing

�� VariableVariable--Precision RenderingPrecision Rendering
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Why Parallel Processing?Why Parallel Processing?
�� Large datasetsLarge datasets

–– Can be visualized fasterCan be visualized faster
�� Parallel machines widespreadParallel machines widespread
�� Interactive designInteractive design

–– Changes and updatesChanges and updates
�� Interleave acquisition of range data with Merge Interleave acquisition of range data with Merge 

Tree constructionTree construction
–– 3D Camcorder (IBM)3D Camcorder (IBM)

Parallel PreprocessingParallel Preprocessing

�� Sequential InitializationSequential Initialization
–– Small fractionSmall fraction

�� Parallel ProcessingParallel Processing
–– Small critical sectionSmall critical section
–– LockLock--free processingfree processing
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Sequential InitializationSequential Initialization

�� Load DatasetLoad Dataset
�� Subdivide verticesSubdivide vertices

–– Using Using OctreeOctree

–– Depth depends on the cell size limitDepth depends on the cell size limit

�� Subdivide edges in a disjoint mannerSubdivide edges in a disjoint manner
–– Edge Edge EEii = (V= (V00,V,V11)) belongs to the cell ofbelongs to the cell of VVjj , , wherewhere

id(id(VVjj) = ) = MAXMAX (id(V(id(V00) , id(V) , id(V11))))

Parallel Cell ProcessingParallel Cell Processing
�� If current cell is a leafIf current cell is a leaf

–– Compute the edge listCompute the edge list
–– Build the edge heapBuild the edge heap

�� While ( length(edge) < cell_side )While ( length(edge) < cell_side )
if valid_edge_collapse(edge)if valid_edge_collapse(edge)

collapse(edge )collapse(edge )
�� After processing all eight child cells After processing all eight child cells 

–– Merge heaps of child cellsMerge heaps of child cells
–– Assign to parentAssign to parent
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Cell ProcessingCell Processing

Initial meshInitial mesh Quad tree subdivisionQuad tree subdivision Parallel Cell ProcessingParallel Cell Processing

Merge cell heapsMerge cell heaps Parent ProcessingParent Processing

Cells QueueCells Queue

�� Large datasets Large datasets ⇒⇒ large number of cellslarge number of cells

�� Usually, Number of cells >> Processors Usually, Number of cells >> Processors 

�� Process lightlyProcess lightly--loaded cells firstloaded cells first

�� Save the cells in queue sorted by number of edgesSave the cells in queue sorted by number of edges
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Algorithm FlowAlgorithm Flow

LockLock

ProcessorProcessor

ProcessorProcessor

ProcessorProcessor

ProcessorProcessor CCaa

ProcessorProcessor CCbb

ProcessorProcessor CCcc

ProcessorProcessor CCdd

ProcessorProcessor CCee

CCff

CChhCCgg

CCii CCkk

Cell Priority QueueCell Priority Queue
Ordered by Cell LoadOrdered by Cell Load

Parallel NavigationParallel Navigation

AdaptAdapt DisplayDisplay

Aux BuffersAux Buffers

Event ChannelsEvent Channels
Merge TreeMerge Tree

Active VerticesActive Vertices

Active TrianglesActive Triangles

Vertex ArrayVertex Array

Triangles ArrayTriangles Array

Color ArrayColor Array
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ResultsResults

Number of Processors

Sp
e e

du
p

El-Sana and Varshney, SPIE Electronic Imaging 99

ResultsResults

�� Linearly Scalable AlgorithmLinearly Scalable Algorithm
�� Highly Load BalancedHighly Load Balanced
�� Applications:Applications:

–– Large Mesh VisualizationLarge Mesh Visualization
–– Interleaved 3D Data Acquisition and DisplayInterleaved 3D Data Acquisition and Display
–– Interactive CADInteractive CAD
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OutlineOutline

�� Geometry and Topology SimplificationsGeometry and Topology Simplifications

�� Implementing ViewImplementing View--dependent dependent LODsLODs

�� Parallel Computation of Continuous Parallel Computation of Continuous LODsLODs

�� VariableVariable--Precision RenderingPrecision Rendering

Defining Level of DetailDefining Level of Detail

�� NumberNumber of Primitivesof Primitives

�� PrecisionPrecision of primitivesof primitives
–Colors (Heckbert 82, Xiang 97)
–Normals (Deering 95, Zhang & Hoff 97)
–Vertex coordinates (King & Rossignac 99) 
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VariableVariable--Precision RenderingPrecision Rendering

�� Reduce the precision of graphics primitivesReduce the precision of graphics primitives
�� Relate the number of bits of input precision Relate the number of bits of input precision 

for a given display accuracyfor a given display accuracy
�� Speedup 3D transformation and lightingSpeedup 3D transformation and lighting

by taking advantage of SIMD parallelismby taking advantage of SIMD parallelism
�� Explore Explore spatiospatio--temporal coherencetemporal coherence

Related WorkRelated Work

Sugihara Sugihara 8989 Taubin & Rossignac Taubin & Rossignac 9898
Milenkovic & Nackman Milenkovic & Nackman 9090 TaubinTaubin et al.et al. 9898
Rossignac & Borrel Rossignac & Borrel 9393 Li & Kuo Li & Kuo 98 98 
Deering Deering 9595 CohenCohen--Or et al. Or et al. 9999
Fortune & Van Wyk Fortune & Van Wyk 9696 BajajBajaj et al. et al. 9999
Chow Chow 97 97 King & Rossignac King & Rossignac 9999
Luebke & Erikson Luebke & Erikson 9797 BajajBajaj et al. et al. 20002000
Fortune Fortune 9898 Pajarola & RossignacPajarola & Rossignac 20002000
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VariableVariable--Precision vs. Precision vs. 
MultiresolutionMultiresolution

Original Multiresolution Variable Precision

AssumptionsAssumptions

• Minimum• Minimum--sized cube covering the objectsized cube covering the object
–– x, y, z normalized to range [x, y, z normalized to range [--1.0, 1.0]1.0, 1.0]

• N• N--bit fixedbit fixed--point representation of operandspoint representation of operands

• Rounding to the nearest integer• Rounding to the nearest integer

• Worst• Worst--case studycase study
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Error AnalysisError Analysis

• Representation error of • Representation error of 
–– Half bit, i.e.,       Half bit, i.e.,       

• Addition error of • Addition error of 

• Multiplication error of • Multiplication error of 

2
1≤aε

accuracy ofbit  one lose i.e., ,1
2
1

2
1

)( =+≤+≤+ baba εεε

1
2
1

2
1

)( =+≤+≤× abba ba εεε , i.e., lose one bit of accuracy

( )ba +

( )ba ×

a

Error AnalysisError Analysis

• Division error of  • Division error of  

eye  to vertexscene of distance
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Putting it all togetherPutting it all together













 +++=

eye  vertex toscene of distance
eye from planefar  of distance1log3 2nm

sformationafter tranaccuracy output  is 
datainput  of bits ofnumber  is 

n
m

   volume view theacrossway -halfobject        
accuracy   level-pixelwith  window10241024 e.g., ×

  15)21(log310
10

2 =+++=
=

m
n

ViewView--dependent dependent 
Transformation Transformation 

• Construct bounding volume hierarchy• Construct bounding volume hierarchy

• Find the projected  size of the object• Find the projected  size of the object

• Determine the nearest visible vertex accuracy• Determine the nearest visible vertex accuracy





−= )

2
range projected(log_ 2mbitsnear
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ViewView--dependent dependent 
TransformationTransformation

Accuracy needed for each vertex:Accuracy needed for each vertex:







−=

)
eye rtex tonearest ve of distance

 vertex theofW  dtransforme(log                       

__

2

bitsnearbitsvertex

Compute by using bounding volume hierarchy

SpatioSpatio--temporal Coherencetemporal Coherence

• Spatial coherence• Spatial coherence
–– Using differences in neighboring verticesUsing differences in neighboring vertices
–– MM x’ = M (x + x’ = M (x + ∆∆x) = M x + M x) = M x + M ∆∆xx
–– TopTop--down down octreeoctree traversaltraversal

• Temporal Coherence• Temporal Coherence
–– FrameFrame--toto--frameframe
–– M’M’ x = (M + x = (M + ∆∆M)M) x  x  = M x + = M x + ∆∆M xM x
–– Can be combined with spatial coherenceCan be combined with spatial coherence
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Transformation ResultTransformation Result

Floating Point
(32 bits/vertex coordinate)

Variable Precision
(7.9 bits/vertex coordinate)

VariableVariable--Precision LightingPrecision Lighting

+×+= matelmodmat ambientambientemissionColor

××∑
++

−

=
ii

m

i qlc
effectspotlight

dkdkk
)_()1(

1

0 2

+× matlight ambientambient(

+××⋅ matlight diffusediffuse})0 ,{max( NL

imatlight
shin specularspecular )})0 ,{max( ××⋅NΗ
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Sources of Illumination ErrorsSources of Illumination Errors

• Operands with different accuracy• Operands with different accuracy

• Square• Square--root operation errorroot operation error

• Specular exponentiation error• Specular exponentiation error

Illumination ErrorsIllumination Errors

Operands    and Operands    and with different bits of accuracy:with different bits of accuracy:

• Addition error of • Addition error of 

• Multiplication error of• Multiplication error of

  222 )1'()1'()1(
)(

+−+−+−
+ ≈+≤+≤ nnn

baba εεε

)1'()1'()1(
)( 21212 +−+−+−

× ≈×+×≤+≤ nnn
abba ba εεε

Same as in the addition case

operandaccurate less  theasaccuracy  same i.e.
( )ba ×

( )ba +

a b
'and)(for  'and)(for  nnbnan >
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Illumination ErrorsIllumination Errors

SquareSquare--root operation error root operation error 

• Fixed• Fixed--point operation point operation ⇒⇒ table lookup table lookup 

•• 2n bits operand2n bits operand

• Most significant n bits as index• Most significant n bits as index

• The result will have n bits of accuracy for most • The result will have n bits of accuracy for most 
casescases

Illumination ErrorsIllumination Errors

Specular exponentiation error of Specular exponentiation error of 

• Operand • Operand with with bits accuracy,      bits accuracy,      

• Error maximized by large   ,• Error maximized by large   , , and , and 
)()( a if  shinaaa aa

shinshin
a <<×+≈+ εεε

)6()1(
)( 212821 −−+− =××<×≈ nn

aa shinashin εε
i.e., lose 6 bits of accuracy at most.

)( shina

a n 128<shin

a aε shin
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Illumination ErrorsIllumination Errors

• Dot• Dot--product of vectors lose ~ 1product of vectors lose ~ 1--2 bits accuracy2 bits accuracy

• Putting it all together• Putting it all together
–– Specular (least accurate) decides the overall accuracySpecular (least accurate) decides the overall accuracy
–– lose 1 bit for normalization, 1~2 bits for dot product,  6 lose 1 bit for normalization, 1~2 bits for dot product,  6 

bits for exponentiationbits for exponentiation
–– Total loss of accuracy: 8 ~ 9 bitsTotal loss of accuracy: 8 ~ 9 bits
–– So: So: m = n+8 or n+9  m = n+8 or n+9  

(n = output accuracy, m = input accuracy)(n = output accuracy, m = input accuracy)

Incremental LightingIncremental Lighting

The error of using L2’ as an estimate of L2 is in the 
order of 

L1 V||

V⊥⊥⊥⊥
V

αααα
L2

L2’

v1

v2

∆α∆α∆α∆α

θθθθ

εεεε
L2






 2

1

2
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Implementation NotesImplementation Notes

�� Vertices processed in groups as a tradeoff betweenVertices processed in groups as a tradeoff between
–– L2 cache sizeL2 cache size
–– Expensive cost of resetting MMX register flag between Expensive cost of resetting MMX register flag between 

changes in operand typeschanges in operand types

�� Avoid error buildupAvoid error buildup
–– Matrix setup and composition per frame is full precisionMatrix setup and composition per frame is full precision
–– Transformations are variable precisionTransformations are variable precision
–– Computation cost is negligibleComputation cost is negligible

Results: BunnyResults: Bunny

Floating Point Variable Precision
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Results: BunnyResults: Bunny

Floating Point
Close-up

Variable Precision
Close-up

Results: VenusResults: Venus

Floating Point Variable Precision
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Results: VenusResults: Venus

Floating Point Variable Precision

ResultsResults
Auxiliary Machine RoomAuxiliary Machine Room

Floating Point Variable Precision
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ResultsResults
Auxiliary Machine RoomAuxiliary Machine Room

Floating Point
Close-up

Variable Precision
Close-up

ConclusionsConclusions

• More efficient transformation and lighting• More efficient transformation and lighting

• Complementary to multiresolution approaches• Complementary to multiresolution approaches

• For the datasets we tested• For the datasets we tested
––Using PII 400MHz PC with 128M RAMUsing PII 400MHz PC with 128M RAM
––Voodoo3 3500 graphics card and Glide APIVoodoo3 3500 graphics card and Glide API
––Provides a factor of 4 or more speedup Provides a factor of 4 or more speedup 
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ConclusionsConclusionsConclusions

� Static and View-dependent LODs for simplifications of geometry 

and topology

� Implicit Dependencies for localizing data accesses

� Skip Strips: Updating triangle strips with view-dependent LODs

� Parallel LOD computation and navigation

� Variable-Precision transformations and lighting

� Static and View-dependent LODs for simplifications of geometry 

and topology

� Implicit Dependencies for localizing data accesses

� Skip Strips: Updating triangle strips with view-dependent LODs

� Parallel LOD computation and navigation

� Variable-Precision transformations and lighting
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Measuring Simplification ErrorMeasuring Simplification ErrorMeasuring Simplification Error

Jonathan CohenJonathan Cohen

Computer Science DepartmentComputer Science Department
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What I’ll Talk About What I’ll Talk About 

�� IntroductionIntroduction

�� Geometric ErrorGeometric Error

�� Attribute ErrorAttribute Error

�� AppearanceAppearance--Preserving Preserving 
SimplificationSimplification
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Why Measure Error?Why Measure Error?

�� Guide simplification processGuide simplification process
–– Making better choices produces better Making better choices produces better 

simplificationssimplifications
�� Know quality of resultsKnow quality of results

–– ObjectObject--space error bounds describes qualityspace error bounds describes quality
�� Know when to show a particular LODKnow when to show a particular LOD

–– Which LOD for a given screenWhich LOD for a given screen--space errorspace error
�� Balance quality for large environmentsBalance quality for large environments

–– What error bound for a given polygon countWhat error bound for a given polygon count

Ford Bronco ModelFord Bronco Model

Triangles: Triangles: 
41,855 41,855 
27,970 27,970 
20,922 20,922 
12,939 12,939 
8,385 8,385 
4,7664,766

courtesy of Division and Viewpointcourtesy of Division and Viewpoint
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What I’ll Talk About What I’ll Talk About 

�� IntroductionIntroduction

�� Geometric ErrorGeometric Error

�� Attribute ErrorAttribute Error

�� AppearanceAppearance--Preserving Preserving 
SimplificationSimplification

Geometric Error MeasuresGeometric Error Measures

�� Promote accurate 3D shape Promote accurate 3D shape 
preservationpreservation

�� Also preserves screenAlso preserves screen--space shapespace shape
–– SilhouettesSilhouettes
–– Pixel coveragePixel coverage
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Classifying Geometric Error MetricsClassifying Geometric Error Metrics

�� VertexVertex--Vertex DistanceVertex Distance
�� VertexVertex--Plane DistancePlane Distance
�� PointPoint--Surface DistanceSurface Distance
�� SurfaceSurface--Surface DistanceSurface Distance

Vertex-Vertex DistanceVertexVertex--Vertex DistanceVertex Distance

�� E = max( || vE = max( || v33--vv11||,  || v||,  || v33--vv22 || )|| )
�� Appropriate during topology changesAppropriate during topology changes

–– Rossignac Rossignac and and Borrel Borrel 9393
–– Luebke and Luebke and Erikson Erikson 9797

�� Loose for topologyLoose for topology--preserving preserving 
collapsescollapses

vv11
vv22

vv33
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VertexVertex--Plane DistancePlane Distance

�� Store set of planes with each vertexStore set of planes with each vertex
–– Error based on distance from vertex to planesError based on distance from vertex to planes
–– When vertices are merged, merge setsWhen vertices are merged, merge sets

�� RonfardRonfard and and Rossignac Rossignac 9696
–– Store plane sets, compute max distanceStore plane sets, compute max distance

�� Error QuadricsError Quadrics -- Garland and Garland and Heckbert Heckbert 9696
–– Store quadratic form, compute sum of Store quadratic form, compute sum of 

square distancessquare distances

aa bb cc

aa
bb

cc

Point-Surface DistancePointPoint--Surface DistanceSurface Distance

�� Used in Hoppe 93 and 96Used in Hoppe 93 and 96
�� Map point set to closest points on Map point set to closest points on 

simplified surfacesimplified surface
�� Compute sum of square distancesCompute sum of square distances
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Surface-Surface DistanceSurfaceSurface--Surface DistanceSurface Distance

�� Bound maximum distance between input Bound maximum distance between input 
and simplified surfacesand simplified surfaces
–– Tolerance Volumes Tolerance Volumes -- GuGuéziecziec 9696
–– Simplification Envelopes Simplification Envelopes -- Cohen/Varshney 96Cohen/Varshney 96
–– HausdorfHausdorf Distance Distance -- Klein 96Klein 96
–– Mapping Distance Mapping Distance -- BajajBajaj//SchikoreSchikore 96, Cohen et 96, Cohen et 

al. 97al. 97

VertexVertex--Vertex != SurfaceVertex != Surface--SurfaceSurface

�� Error is zero at vertices and exterior Error is zero at vertices and exterior 
edgesedges

�� Error is nonError is non--zero everywhere elsezero everywhere else
–– not captured by vertexnot captured by vertex--vertex or vertexvertex or vertex--

plane metricsplane metrics

Edge swapEdge swap
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Memoryless Memoryless SimplificationSimplification

�� Lindstrom/Turk 98Lindstrom/Turk 98
�� No measure of error from original meshNo measure of error from original mesh

–– IncrementalIncremental rather than total errorrather than total error
�� Preserve volume and area as Preserve volume and area as 

simplification progressessimplification progresses
�� Low error demonstrated afterLow error demonstrated after--thethe--factfact

–– Metro Metro -- CignoniCignoni et al. 96et al. 96

Screen-space Geometric ErrorScreenScreen--space Geometric Errorspace Geometric Error

w
ε

d

r

θ

LOD

eye

viewing
plane

p

)2tan(2 θ
εε

d
r

w
rp ==

)2tan(2 θ
εε

d
r

w
rp ==
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Geometric Error ObservationsGeometric Error Observations

�� VertexVertex--vertex and vertexvertex and vertex--plane distanceplane distance
–– FastFast
–– Low error shown afterLow error shown after--thethe--fact, but not fact, but not 

guaranteed by metricguaranteed by metric
�� Cannot guarantee quality without surfaceCannot guarantee quality without surface--

surface distance boundsurface distance bound
�� Hoppe’s pointHoppe’s point--surface approximates onesurface approximates one--

sided surfacesided surface--surfacesurface
�� Good error measures useful at runGood error measures useful at run--timetime

–– 3D average or maximum error distance3D average or maximum error distance

Video ExampleVideo Example

Cohen, Varshney, et al., Cohen, Varshney, et al., “Simplification “Simplification 
Envelopes,”Envelopes,” Proceedings of Proceedings of 
SIGGRAPH 96.SIGGRAPH 96.
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What I’ll Talk About What I’ll Talk About 

�� IntroductionIntroduction

�� Geometric ErrorGeometric Error

�� Attribute ErrorAttribute Error

�� AppearanceAppearance--Preserving Preserving 
SimplificationSimplification

Attribute Error MetricsAttribute Error Metrics

�� Attributes include colors, normals, and Attributes include colors, normals, and 
texture coordinatestexture coordinates

�� Promote accuracy of final pixel colorsPromote accuracy of final pixel colors
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Classifying Attribute Error MetricsClassifying Attribute Error Metrics

�� VertexVertex--Vertex DistanceVertex Distance

�� VertexVertex--Plane DistancePlane Distance

�� PointPoint--Surface DistanceSurface Distance

�� SurfaceSurface--Surface DistanceSurface Distance

VertexVertex--Vertex DistanceVertex Distance

�� GAPS point clouds GAPS point clouds -- EriksonErikson/Manocha 98/Manocha 98
–– Measure sum of square distances from vertex to Measure sum of square distances from vertex to 

its constituent vertices (areaits constituent vertices (area--weighted)weighted)

–– Used for colors, normals, and texture coordinatesUsed for colors, normals, and texture coordinates

–– Stored as 5 floats for 3D attributes (e.g.Stored as 5 floats for 3D attributes (e.g. rgbrgb))

�� Normal conesNormal cones
–– Luebke/Luebke/Erikson Erikson 97, 97, Xia Xia et al. 97et al. 97
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VertexVertex--Plane DistancePlane Distance

�� HigherHigher--dimensional error quadricsdimensional error quadrics
–– Garland and Garland and Heckbert Heckbert 9898
–– Vertices live in higherVertices live in higher--dimensional position + dimensional position + 

attribute spaceattribute space
–– Planes defined in this spacePlanes defined in this space

�� Multiple attribute quadricsMultiple attribute quadrics
–– Hoppe 99Hoppe 99
–– Decouples affects of position and attributes Decouples affects of position and attributes 
–– Reduces storage and computational complexityReduces storage and computational complexity

PointPoint--Surface DistanceSurface Distance

�� Extension of geometric pointExtension of geometric point--surface surface 
distancedistance
–– Hoppe 96Hoppe 96

�� Geometric correspondences found between Geometric correspondences found between 
original surface samples and simplified original surface samples and simplified 
surfacesurface

�� Sum of square attribute distances minimizedSum of square attribute distances minimized

�� Used primarily for vertex colors Used primarily for vertex colors 
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SurfaceSurface--Surface DistanceSurface Distance

�� Bajaj Bajaj / / Schikore Schikore 9696
–– Geometric projections provide local Geometric projections provide local 

mappingsmappings
–– Maximum distance of scalar attributes Maximum distance of scalar attributes 

measured over surfacemeasured over surface

ScreenScreen--space Attribute Errorspace Attribute Error

�� Texture coordinates work like Texture coordinates work like 
geometric error geometric error 
–– Cohen et al. 98Cohen et al. 98

�� Normal error controls dynamic Normal error controls dynamic 
refinement around highlightsrefinement around highlights
–– Xia Xia et al. 97, Klein 98et al. 97, Klein 98
–– Doesn’t allow more simplification as Doesn’t allow more simplification as 

objects recedeobjects recede
�� Color control?Color control?
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What I’ll Talk About What I’ll Talk About 

�� IntroductionIntroduction

�� Geometric ErrorGeometric Error

�� Attribute ErrorAttribute Error

�� AppearanceAppearance--Preserving Preserving 
SimplificationSimplification

–– Cohen et al. 98Cohen et al. 98

Appearance PreservationAppearance Preservation

�� Preserve three appearance Preserve three appearance 
attributes:attributes:
–– Surface PositionSurface Position
–– Surface CurvatureSurface Curvature
–– Material ColorMaterial Color

�� Each may require different samplingEach may require different sampling
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Normals UndersampledNormals Normals UndersampledUndersampled

13,433 triangles 1,749 triangles
10 pixels of surface deviation

Normals Properly SampledNormals Properly SampledNormals Properly Sampled

13,433 triangles 1,749 triangles, 
10 pixels of deviation
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v1, c1, n1

v = vertex coordinate = (x,y,z)
c = color = (r,g,b)
n = normal = (nx,ny,nz)

v2, c2, n2

v3, c3, n3

Traditional Polygonal RepresentationTraditional Polygonal Representation

Traditional SimplificationTraditional Simplification

�� Filters surface position, colors, and Filters surface position, colors, and 
normalsnormals

�� Must filter all three Must filter all three equallyequally
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texture map

normal map

v1, t1

v2, t2

v3, t3

v = vertex coordinate = (x,y,z)
t = texture coordinate = (u,v)
c = color = (r,g,b)
n = normal vector = (nx,ny,nz)

c1

c2
c3

n1

n2
n3

Decoupled RepresentationDecoupled Representation

Decoupled ApproachDecoupled Approach

�� Simplification filters surface position Simplification filters surface position 
and texture coordinatesand texture coordinates

�� Color and normal attributes filtered perColor and normal attributes filtered per--
pixel (mippixel (mip--mapping, etc.)mapping, etc.)
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Sample Normal MapSample Normal MapSample Normal Map

polygonal surface patch normal map

Normal Map vs. Bump MapNormal Map vs. Bump MapNormal Map vs. Bump Map

�Normal map
–Absolute normals in object space
–Constant as object is simplified

� Same normal map okay for all LODs

�Bump map
–Perturbations of triangle normal
–Changes as object is simplified

� Need different bump map for each LOD

�� Normal mapNormal map
––Absolute normals in object spaceAbsolute normals in object space
––Constant as object is simplifiedConstant as object is simplified

�� Same normal map okay for allSame normal map okay for all LODsLODs

�� Bump mapBump map
––Perturbations of triangle normalPerturbations of triangle normal
––Changes as object is simplifiedChanges as object is simplified

�� Need different bump map for each LODNeed different bump map for each LOD
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Texture Deviation MetricTexture Deviation MetricTexture Deviation Metric

�Distance between corresponding 3D 
points
–Same 2D texture coordinates
–Projects at run time to 2D pixel deviation

� Intuitive error tolerance specification
–Pixels of deviation for both surface 

position and texture error!

�� Distance between Distance between correspondingcorresponding 3D 3D 
pointspoints
––Same 2D texture coordinatesSame 2D texture coordinates
––Projects at run time to 2D pixel deviationProjects at run time to 2D pixel deviation

�� Intuitive error tolerance specificationIntuitive error tolerance specification
––Pixels of deviation for both surface Pixels of deviation for both surface 

position and texture error!position and texture error!

Point CorrespondencePoint CorrespondencePoint Correspondence
mesh Mmesh Mii mesh Mmesh Mi+1i+1

2D texture domain2D texture domain

(i+1)(i+1)stst edge collapseedge collapse

XXii XXii+1+1

xx ei,i+1(x) = || Xi+1 - Xi ||

Ei,i+1 = max ei,i+1(x)
x∈∈∈∈∈∈∈∈P

P
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Hardware RequirementsHardware Requirements

�� Texture and normal (or bump) map Texture and normal (or bump) map 
capabilitycapability
–– Bandwidth for attribute map lookupsBandwidth for attribute map lookups
–– PerPer--pixel lighting computationpixel lighting computation

�� Demonstrated on PixelFlowDemonstrated on PixelFlow
�� Possible on commercial hardwarePossible on commercial hardware

–– Normal map shading by Normal map shading by Heidrich Heidrich 9999

APS LevelAPS Level--ofof--detail Hierarchydetail Hierarchy

model courtesy of Stanford and Caltech

7,809 tris

3,905 tris

1,951 tris

975 tris

488 tris
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Video ExampleVideo Example

�� Cohen, Olano, and Manocha, Cohen, Olano, and Manocha, 
“Appearance“Appearance--Preserving Preserving 
Simplification,”Simplification,” Proceedings of Proceedings of 
SIGGRAPH 98.SIGGRAPH 98.

APS Executive SummaryAPS Executive Summary

�� Colors and normals stored in texture Colors and normals stored in texture 
and normal mapsand normal maps

�� Texture deviationTexture deviation computed using computed using 
parametric correspondenceparametric correspondence

�� Preserves colors and normals, Preserves colors and normals, 
bounding texture motion in object and bounding texture motion in object and 
screen spacescreen space
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ConclusionsConclusions
�� Variety of approaches to bounding object Variety of approaches to bounding object 

and attribute space errorsand attribute space errors
�� ScreenScreen--space geometric error knownspace geometric error known
�� ScreenScreen--space texture error knownspace texture error known
�� ScreenScreen--space color and normal error still space color and normal error still 

have room for improvementhave room for improvement
–– Employ bounds on color and normal deviation at Employ bounds on color and normal deviation at 

runrun--timetime
–– Guarantee appearance, but simplify more as Guarantee appearance, but simplify more as 

objects recedeobjects recede
–– Texture and normal map approach requires Texture and normal map approach requires 

parameterization, texture management, and parameterization, texture management, and 
improved shading hardwareimproved shading hardware
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IntroductionIntroduction

�� What are we going to talk about?What are we going to talk about?
–– Guiding LOD selection with reference to models of Guiding LOD selection with reference to models of 

visual perceptionvisual perception
�� Why do we care about visual perception?Why do we care about visual perception?

–– Optimize computational resourcesOptimize computational resources
–– Minimize LOD popping effectsMinimize LOD popping effects
–– Develop a principled scheme for selecting LODDevelop a principled scheme for selecting LOD

�� Caveats!Caveats!
–– Visual perception is hard! Let’s do what we can.Visual perception is hard! Let’s do what we can.

Summary of Level of DetailSummary of Level of Detail

�� Primary LOD selection criteriaPrimary LOD selection criteria
–– Distance or SizeDistance or Size
–– VelocityVelocity
–– EccentricityEccentricity
–– Depth of FieldDepth of Field

�� Additional LOD constraintsAdditional LOD constraints
–– FixedFixed--frame rate schedulers (reactive or frame rate schedulers (reactive or 

predictive)predictive)
–– Hysteresis Hysteresis (switching lag)(switching lag)
–– Priority schemesPriority schemes
–– AlphaAlpha--blended transitions (fading regions)blended transitions (fading regions)
–– GeomorphGeomorph transitions (morph geometry)transitions (morph geometry)



3

Distance LODDistance LOD

  Select resolution based upon the distance between Select resolution based upon the distance between 
an element and the viewpoint, i.e. coarser resolution an element and the viewpoint, i.e. coarser resolution 
for distant geometry.for distant geometry.
–– Simple to calculate (3Simple to calculate (3--D Euclidean distance)D Euclidean distance)
–– Scale dependentScale dependent
–– Resolution dependentResolution dependent
–– Field of View dependentField of View dependent

dd11

dd22

Size LODSize LOD

  Select resolution based upon Select resolution based upon 
the projected screen size (or the projected screen size (or 
area) of an element. Objects area) of an element. Objects 
appear smaller as they move appear smaller as they move 
further away.further away.
–– Requires 3Requires 3--D D →→ 22--D D 

projectionprojection
–– Scale invariantScale invariant
–– Resolution invariantResolution invariant
–– Field of View invariantField of View invariant

�� Bounding spheres or ellipsoids Bounding spheres or ellipsoids 
normally used instead of boxes as normally used instead of boxes as 
more efficient to calculate projected more efficient to calculate projected 
extentextent
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Eccentricity LODEccentricity LOD

–– Resolution is selected based upon the Resolution is selected based upon the 
degree to which an element exists in the degree to which an element exists in the 
visual periphery, i.e. display elements that visual periphery, i.e. display elements that 
the user is looking at in high resolution.the user is looking at in high resolution.

–– Humans can resolve less detail in their Humans can resolve less detail in their 
peripheral field due to:peripheral field due to:

-- more retinal photoreceptors (rods/cones) more retinal photoreceptors (rods/cones) 
towards foveatowards fovea

-- retinal and cortical cell receptive field sizes retinal and cortical cell receptive field sizes 
increases linearly with eccentricityincreases linearly with eccentricity

-- 80% of cortical cells devoted to central 10 80% of cortical cells devoted to central 10 
degrees of vision degrees of vision 

–– Use eye tracking system to track user’s gaze Use eye tracking system to track user’s gaze 
or assume user looking towards center of or assume user looking towards center of 
displaydisplay

θθ

Velocity LODVelocity LOD

–– Resolution based upon the angular Resolution based upon the angular 
velocity of an element across the visual velocity of an element across the visual 
field, i.e. faster moving objects appear in field, i.e. faster moving objects appear in 
lower resolutionlower resolution

–– Humans can resolve less spatial detail in Humans can resolve less spatial detail in 
objects moving across the retina, causing objects moving across the retina, causing 
objects to blur as they move/ rotate, or objects to blur as they move/ rotate, or 
the user’s gaze movesthe user’s gaze moves

–– It is believed visual information for small It is believed visual information for small 
features are destroyed by the process of features are destroyed by the process of 
integrating stimulus energy over timeintegrating stimulus energy over time

–– Without eye tracking technology, assume Without eye tracking technology, assume 
angular velocity across display deviceangular velocity across display device

20 deg/s20 deg/s

1 deg/s1 deg/s
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Depth of Field LODDepth of Field LOD

–– Resolution of element dependent upon the depth of field Resolution of element dependent upon the depth of field 
focus of the user’s eyes, i.e. objects out with the focus of the user’s eyes, i.e. objects out with the fusional fusional 
area appear in lower detailarea appear in lower detail

–– Under binocular vision, both eyes converge on object at Under binocular vision, both eyes converge on object at 
certain distance in order to focus retinal imagecertain distance in order to focus retinal image

–– Objects in front or behind this Objects in front or behind this fusional fusional area are unfocused, area are unfocused, 
suffering from double imagessuffering from double images

–– Must track both eyes accuratelyMust track both eyes accurately to to 
evaluate convergence distanceevaluate convergence distance

Panum’s fusional Panum’s fusional areaarea

Example: Example: Funkhouser Funkhouser & & SéquinSéquin

SIGGRAPH 1993 SIGGRAPH 1993 -- Visualize Complex Virtual Visualize Complex Virtual EnvsEnvs..
�� Achieve (predictive) fixed frame rate byAchieve (predictive) fixed frame rate by

Maximise     Maximise     ΣΣs s Benefit( Benefit( ObjectObject, , LodLod, , AlgorithmAlgorithm ))

Subject to Subject to ΣΣs s Cost( Cost( ObjectObject,, LodLod, , AlgorithmAlgorithm ) ) ≤≤ TargetFrameRateTargetFrameRate

�� Benefit = contribution to model perception:Benefit = contribution to model perception:
–– Size: larger objects contribute more to imageSize: larger objects contribute more to image
–– Accuracy: no of Accuracy: no of vertsverts//polyspolys, shading model, etc., shading model, etc.
–– Priority: account for inherent importancePriority: account for inherent importance
–– Eccentricity: based on distance from center of displayEccentricity: based on distance from center of display
–– Velocity: ratio of apparent speed to average polygon sizeVelocity: ratio of apparent speed to average polygon size
–– HysteresisHysteresis: use state from previous frame: use state from previous frame

�� No head/eye tracking. No head/eye tracking. 
No results on perceptual criteria.No results on perceptual criteria.
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“Adaptive Display Algorithm”“Adaptive Display Algorithm”
Funkhouser Funkhouser and and SéquinSéquin

(University of California, Berkeley)(University of California, Berkeley)

Example:Example: FunkhouserFunkhouser && SéquinSéquin

Example: Example: Hitchner Hitchner & & McGreevyMcGreevy

SPIE (1993) SPIE (1993) -- NASA VPE NASA VPE TestbedTestbed
�� Achieve (reactive) fixed frame rate by:Achieve (reactive) fixed frame rate by:

detaildetail =  geometry primitives per unit area=  geometry primitives per unit area
interestinterest =  importance to the user=  importance to the user
–– Eccentricity factor:Eccentricity factor: FnFnEE = = γγstaticstatic / eccentricity/ eccentricity
–– Velocity factor:Velocity factor: FnFnVV = = γγdynamicdynamic / velocity/ velocity
–– Distance factor:Distance factor: FnFnDD = = ββ / velocity/ velocity
  (where(where γγstaticstatic,, γγdynamicdynamic,, andand ββ areare arbitrary scaling factors)arbitrary scaling factors)

�� Used a headUsed a head--mounted display with 6 degreemounted display with 6 degree--
ofof--freedom head tracker. freedom head tracker. 
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Example: Ohshima et al.Example: Ohshima et al.

VRAIS (1996) VRAIS (1996) -- GazeGaze--Directed RenderingDirected Rendering
�� Used 3 criteria to evaluate visual acuity:Used 3 criteria to evaluate visual acuity:

–– eccentricity:eccentricity: g(g(∆φ∆φ) = 1 ) = 1 -- ∆φ∆φ/c/c22 (0 (0 ≤≤ ∆φ∆φ ≤≤ cc22; else 0); else 0)
–– velocity:velocity: f(f(θθ) = exp( ) = exp( --((θθ--αα)/c)/c1 1 )) ((αα << θθ; else 1); else 1)
–– depth of field:depth of field: h(h(∆ϕ∆ϕ) = exp( ) = exp( --((∆ϕ∆ϕ--b)/cb)/c3 3 )) (b (b << ∆ϕ∆ϕ; else 1); else 1)

  arbitrary scaling factors set as follows:arbitrary scaling factors set as follows:
  cc11 = 6.2 deg, = 6.2 deg, cc22 = 180 deg, = 180 deg, cc33 = 0.62 deg, = 0.62 deg, bb = 0 deg.= 0 deg.
  αα = visual angle occupied by object= visual angle occupied by object

�� Saccadic suppression:Saccadic suppression:
–– skip rendering when gaze velocity > 180 deg/sskip rendering when gaze velocity > 180 deg/s

�� Used head tracker as a substitute for eye tracker. Used head tracker as a substitute for eye tracker. 
Used 60 deg projection screen.Used 60 deg projection screen.

“Gaze“Gaze--directed Adaptive Rendering”directed Adaptive Rendering”
Ohshima, Yamamoto, and TamuraOhshima, Yamamoto, and Tamura

(Canon Inc.)(Canon Inc.)

Example: Ohshima et al.Example: Ohshima et al.



8

Example: Lindstrom & TurkExample: Lindstrom & Turk

ACM Trans. (2000) ACM Trans. (2000) -- ImageImage--Driven SimplificationDriven Simplification
�� Render each LOD offRender each LOD off--screen and analyze images screen and analyze images 

to decide which parts of the model to simplifyto decide which parts of the model to simplify

• Guides simplification based upon the visual effect of 
the reduction rather than some geometric metric

• Uses a sphere of cameras to capture multiple 
viewpoints

• Deals with surface properties and textures

• Uses RMS error of luminances to compute image 
distances (fast but not perceptually based)

• Not real-time (several secs to mins or hours)

•• Guides simplification based upon the visual effect of Guides simplification based upon the visual effect of 
the reduction rather than some geometric metricthe reduction rather than some geometric metric

•• Uses a sphere of cameras to capture multiple Uses a sphere of cameras to capture multiple 
viewpointsviewpoints

•• Deals with surface properties and texturesDeals with surface properties and textures

•• Uses RMS error of Uses RMS error of luminancesluminances to compute image to compute image 
distances (fast but not perceptually based)distances (fast but not perceptually based)

•• Not realNot real--time (several time (several secssecs to to minsmins or hours)or hours)

The EyeThe Eye
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The RetinaThe Retina

LightLight

The Limits of VisionThe Limits of Vision

�� Visual acuityVisual acuity
–– Retina can resolve detail of around 0.5 min of arcRetina can resolve detail of around 0.5 min of arc
–– 130 million photoreceptors / 1 million ganglion cells130 million photoreceptors / 1 million ganglion cells

�� Peripheral VisionPeripheral Vision
–– Highest sensitivity to spatial detail at fovea           Highest sensitivity to spatial detail at fovea           

(the central 4 to 5 degrees of vision)(the central 4 to 5 degrees of vision)
–– 3535--fold reduction from fovea fold reduction from fovea →→ peripheryperiphery

�� Motion SensitivityMotion Sensitivity
–– Eye less sensitive to detail moving across retinaEye less sensitive to detail moving across retina
–– Fast moving objects become “blurred”Fast moving objects become “blurred”
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Measuring Limits of VisionMeasuring Limits of Vision

�� “Contrast Grating” used to analyze “Contrast Grating” used to analyze 
contrast sensitivity . Can vary:contrast sensitivity . Can vary:
–– Spatial frequency (bar spacing) Spatial frequency (bar spacing) -- cycles per cycles per 

deg (c/deg)deg (c/deg)
–– Contrast (amplitude)Contrast (amplitude)
–– OrientationOrientation
–– VelocityVelocity
–– EccentricityEccentricity

Modeling Limits of VisionModeling Limits of Vision

�� Results of Contrast Results of Contrast 
Grating tests can be Grating tests can be 
modeled with a modeled with a 
Contrast Sensitivity Contrast Sensitivity 
FunctionFunction

�� CSF defines the CSF defines the 
bandwidth of visionbandwidth of vision
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Velocity CSFVelocity CSF

�� Kelly (1979) developed an equation to predict Kelly (1979) developed an equation to predict 
the CSF for various stimulus velocitiesthe CSF for various stimulus velocities

  G(G(αα,v) = [250.1+299.3 |log,v) = [250.1+299.3 |log1010(v/3)|(v/3)|33] ] ××

  vvαα221010--5.55.5αα(v+2)/45.9(v+2)/45.9

  where,where,

  αα = spatial frequency (c/deg)= spatial frequency (c/deg)

  v = velocity (deg/s)v = velocity (deg/s)

  

Eccentricity CSFEccentricity CSF

�� Rovamo Rovamo & & Virsu Virsu (1979) developed equations to (1979) developed equations to 
model the decline of sensitivity with eccentricity model the decline of sensitivity with eccentricity 
for the 4 principal halffor the 4 principal half--meridians of the retina meridians of the retina 

  Nasal:Nasal: MnMn(E) = 1 / (1+0.33E+0.00007E(E) = 1 / (1+0.33E+0.00007E33))

  Superior:Superior: Ms(E) = 1 / (1+0.42E+0.00012EMs(E) = 1 / (1+0.42E+0.00012E33))

  Temporal:Temporal: Mt(E) = 1 / (1+0.29E+0.000012EMt(E) = 1 / (1+0.29E+0.000012E33))

  Inferior:Inferior: Mi(E) = 1 / (1+0.42E+0.000055EMi(E) = 1 / (1+0.42E+0.000055E33))

  where,where,

  E = eccentricity (deg)E = eccentricity (deg)
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Other CSF FactorsOther CSF Factors

�� Background illuminationBackground illumination
–– Contrast sensitivity degrades in dim conditionsContrast sensitivity degrades in dim conditions

�� Display Device SettingsDisplay Device Settings
–– Brightness, contrast, color, and gammaBrightness, contrast, color, and gamma

�� Viewer’s level of light Viewer’s level of light adaptionadaption
–– Photoreceptor range and pupil dilation controlled by a Photoreceptor range and pupil dilation controlled by a 

feedback loopfeedback loop
�� Viewer’s visual system efficiencyViewer’s visual system efficiency

–– e.g., myopia causes light to converge in front of retinae.g., myopia causes light to converge in front of retina
�� Viewer’s ageViewer’s age

–– Contrast sensitivity less developed in infants & declines Contrast sensitivity less developed in infants & declines 
with old agewith old age

Other CSF Factors (continued)Other CSF Factors (continued)

�� Viewer’s emotional stateViewer’s emotional state
–– Affects dilation of pupils: smaller pupil = less light = Affects dilation of pupils: smaller pupil = less light = 

drop in visual acuitydrop in visual acuity
�� Auditory Stimuli?Auditory Stimuli?

–– Recent Nature paper shows visual perception Recent Nature paper shows visual perception 
affected by a adding an audible beep during taskaffected by a adding an audible beep during task

Therefore, perceptual data are normally based upon a 
“Standard Observer”, assuming ideal environmental and 

viewer conditions.

Therefore, perceptual data are normally based upon a Therefore, perceptual data are normally based upon a 
“Standard Observer”, assuming ideal environmental and “Standard Observer”, assuming ideal environmental and 

viewer conditions.viewer conditions.
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Visual Perception SoftwareVisual Perception Software

Vermeer

“Officer and Laughing 
Girl”, 1658-60

120 x 135 degrees FOV

No eccentricity blurring

No velocity blurring

Visual Perception SoftwareVisual Perception Software

Vermeer

“Officer and Laughing 
Girl”, 1658-60

120 x 135 degrees FOV

Eccentricity blurring

No velocity blurring
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Visual Perception SoftwareVisual Perception Software

Vermeer

“Officer and Laughing 
Girl”, 1658-60

120 x 135 degrees FOV

Eccentricity blurring

Velocity = 60 deg/s

Visual Perception SoftwareVisual Perception Software

�� Visualize the limits of vision in an intuitive mannerVisualize the limits of vision in an intuitive manner
�� Calculate highest spatial frequency of each pixel Calculate highest spatial frequency of each pixel 

given its eccentricity and a constant usergiven its eccentricity and a constant user--specified specified 
velocity. Then blur this pixel using an equivalentlyvelocity. Then blur this pixel using an equivalently--
sizedsized GaussianGaussian filterfilter

�� Based on Kelly, Based on Kelly, Rovamo Rovamo & & Virsu Virsu modelsmodels
�� Open Source, C code (GPL)Open Source, C code (GPL)
�� http://www.http://www.aiai..srisri.com/~.com/~reddyreddy/percept/ /percept/ 
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Visual Perception SoftwareVisual Perception Software

  A program for testing contrast sensitivity functions A program for testing contrast sensitivity functions 
that is presented as a simple video game. From that is presented as a simple video game. From 
Berkeley VSOC.Berkeley VSOC.

  http://http://vsocvsoc..berkeleyberkeley..eduedu//vsocvsoc//

Visual Perception SoftwareVisual Perception Software

A realA real--time visual neuron simulator. Explore the time visual neuron simulator. Explore the 
receptive fields of artificial neurons. From Berkeley receptive fields of artificial neurons. From Berkeley 
VSOC.VSOC.

http://http://vsocvsoc..berkeleyberkeley..eduedu//vsocvsoc//
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The CSF & Computer GraphicsThe CSF & Computer Graphics

�� Sine v Square WaveformSine v Square Waveform

–– Above the peak frequency, the amplitude of Above the peak frequency, the amplitude of 
square wave CSF is largely determined by square wave CSF is largely determined by 
the fundamental sine wavethe fundamental sine wave

–– The limit of vision is the same in each caseThe limit of vision is the same in each case

??

The CSF & Computer GraphicsThe CSF & Computer Graphics

�� Harmonic v Complex WaveformHarmonic v Complex Waveform

–– Visibility of complex grating is characterized Visibility of complex grating is characterized 
by the independent contributions from each by the independent contributions from each 
harmonic componentharmonic component

–– belowbelow--threshold highthreshold high--frequency components frequency components 
can be removed without perceivable changecan be removed without perceivable change

??
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The CSF & Computer GraphicsThe CSF & Computer Graphics

�� 22--D v 1D v 1--D WaveformD Waveform

–– Introduce an orientation Introduce an orientation 
parameter to describe 2parameter to describe 2--D D 
features, e.g. (2 c/deg, 90 deg)features, e.g. (2 c/deg, 90 deg)

??

The CSF and Computer The CSF and Computer 
GraphicsGraphics

�� Color v Color v GreyscaleGreyscale GratingsGratings
–– Luminance channel more effective                 Luminance channel more effective                 

than chromatic channels forthan chromatic channels for
�� Form detectionForm detection
�� MotionMotion
�� Stereoscopic depthStereoscopic depth

–– For exampleFor example
�� Luminance upper resolution = 60 c/degLuminance upper resolution = 60 c/deg
�� Red/Green upper resolution = 12 c/degRed/Green upper resolution = 12 c/deg

–– Therefore, use (simpler) achromatic Therefore, use (simpler) achromatic 
CSF threshold models rather than CSF threshold models rather than 
chromatic oneschromatic ones

(Wandel, 1995)(Wandel, 1995)
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What about What about hyperacuityhyperacuity??

–– Hyperacuity Hyperacuity describes the paradox that certain stimuli can be describes the paradox that certain stimuli can be 
perceived that are smaller than the size of a single photoperceived that are smaller than the size of a single photo--
receptor cellreceptor cell

–– Photoreceptors subtend 25Photoreceptors subtend 25--30 sec of arc (= 60 c/deg)30 sec of arc (= 60 c/deg)
–– But it is possible to discriminate the non coBut it is possible to discriminate the non co--linearity of two linearity of two 

thick abutting lines to a resolution of 2thick abutting lines to a resolution of 2--5 sec of arc (5 sec of arc (Vernier Vernier 
Acuity)Acuity)

Due to differences in mean Due to differences in mean 
distribution of light sampled over distribution of light sampled over 
a number of photoreceptorsa number of photoreceptors
Degrades markedly with Degrades markedly with eccecc..
We are concerned with detection We are concerned with detection 
not discrimination thoughnot discrimination though

What about saccades?What about saccades?

–– A saccade is a rapid reflex movement of the eye to fixate a A saccade is a rapid reflex movement of the eye to fixate a 
target onto the fovea (from French target onto the fovea (from French saccadersaccader, “to jerk”), “to jerk”)

–– We do not appear to perceive detail during a saccadeWe do not appear to perceive detail during a saccade
–– Saccades can occur at velocities of up to 800 deg/sSaccades can occur at velocities of up to 800 deg/s
–– Duration can be many milliseconds:Duration can be many milliseconds:

�� duration (ms) = 20 + duration (ms) = 20 + angularDist angularDist * 2* 2
�� e.g. 10 deg saccade lasts ~40 mse.g. 10 deg saccade lasts ~40 ms

Ohshima et al.’s (1996) system Ohshima et al.’s (1996) system 
suspended rendering at gaze suspended rendering at gaze 
velocities > 180 deg/svelocities > 180 deg/s
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What about visual masking?What about visual masking?

–– Also, the detection threshold of a Also, the detection threshold of a 
stimulus varies inversely as a stimulus varies inversely as a 
function of its distance from an function of its distance from an 
edge (larger errors can be edge (larger errors can be 
tolerated around an edge)tolerated around an edge)

–– FerwerdaFerwerda et al. (1997) developed et al. (1997) developed 
a visual masking model for a visual masking model for 
computer graphicscomputer graphics   Harmon & Harmon & Julesz Julesz (1973)(1973)

The presence of one visual pattern can affect the visibility of 
another pattern
e.g. a large adjacent stimulus (in time or space) can cause the 
threshold of a smaller stimulus to be increased - the smaller 
stimulus needs to be more intense for it to be visible

The presence of one visual pattern can affect the visibility of 
another pattern
e.g. a large adjacent stimulus (in time or space) can cause the 
threshold of a smaller stimulus to be increased - the smaller 
stimulus needs to be more intense for it to be visible

What about the blind spot?What about the blind spot?

–– The blind spot is caused by the area of the retina The blind spot is caused by the area of the retina 
where all axons of the retinal ganglion cells meet to where all axons of the retinal ganglion cells meet to 
form the optic nerve. There are no photoreceptors in form the optic nerve. There are no photoreceptors in 
this region.this region.

–– Can we reduce detail if an object falls onto the blind Can we reduce detail if an object falls onto the blind 
spot?spot?

–– Size of blind spot = 5 Size of blind spot = 5 -- 7 deg7 deg
–– Located at ~17 deg eccentricityLocated at ~17 deg eccentricity

We have 2 eyes! At least We have 2 eyes! At least 
one eye will always detect one eye will always detect 
the object, so don’t bother the object, so don’t bother 
with the blind spotwith the blind spot
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Applying Perceptual MetricsApplying Perceptual Metrics

�� Monitor object statisticsMonitor object statistics
  Calculate the projected size (deg), velocity (deg/s), and Calculate the projected size (deg), velocity (deg/s), and 

eccentricity (deg) of any part of an object. (Relative to the eccentricity (deg) of any part of an object. (Relative to the 
display, the user’s head, or the user’s gaze.)display, the user’s head, or the user’s gaze.)

�� Measure perceived detail in imageryMeasure perceived detail in imagery
  Describe the perceived spatial detail of any part of an Describe the perceived spatial detail of any part of an 

object in terms of its spatial frequencies (c/deg)object in terms of its spatial frequencies (c/deg)
�� Model user’s visual acuityModel user’s visual acuity

  Use mathematical model to estimate the contrast Use mathematical model to estimate the contrast 
sensitivity of the user under various conditions (velocity, sensitivity of the user under various conditions (velocity, 
eccentricity, etc.)eccentricity, etc.)

Perceptual LOD SystemsPerceptual LOD Systems

�� Reddy (1997, 2001)Reddy (1997, 2001)
–– Static and viewStatic and view--dependent LOD Systemsdependent LOD Systems
–– Calculate spatial frequency profiles for each LOD offCalculate spatial frequency profiles for each LOD off--line line 

using a sphere of camerasusing a sphere of cameras
–– Ignore contrast (assume worstIgnore contrast (assume worst--case scenario)case scenario)

�� Luebke (2000)Luebke (2000)
–– Dynamic (viewDynamic (view--dependent) LOD Systemdependent) LOD System
–– Calculate spatial frequency induced by folding a node in realCalculate spatial frequency induced by folding a node in real--

timetime
–– Incorporate contrast and silhouette conditionsIncorporate contrast and silhouette conditions
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Calculating c/deg Calculating c/deg -- ReddyReddy

  Isolate visual featureIsolate visual feature

  Extract relative Extract relative 
fundamental spatial fundamental spatial 
frequencies (c/pixel)frequencies (c/pixel)

  1 feature = 1/2 contrast cycle,  1 feature = 1/2 contrast cycle,  
so 4 pixels = 1/8  c/pixelso 4 pixels = 1/8  c/pixel

  Apply Field of View scaling Apply Field of View scaling 
(c/deg)(c/deg)

Horiz Horiz FOVFOV

VertVert FOVFOV

Calculating c/deg Calculating c/deg -- ReddyReddy

x-axis = relative spatial frequency (c/pixel). Scale by field of view for c/deg
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Sample Results Sample Results -- ReddyReddy

�� Passive psychophysical navigation task used to Passive psychophysical navigation task used to 
evaluate benefit of perceptual criteriaevaluate benefit of perceptual criteria

4 4 LODsLODs for each objectfor each object
LOD varied by size, LOD varied by size, 
velocity, & eccentricityvelocity, & eccentricity
User focused on User focused on 
crosshair in centercrosshair in center
Desktop configuration Desktop configuration 
with bite bar to with bite bar to 
constrain head constrain head 
movementsmovements

Sample Results Sample Results -- ReddyReddy

User task proficiency increased User task proficiency increased 
2.8 times (at the 95% 2.8 times (at the 95% 

performance threshold)performance threshold)

Average response time Average response time 
improved 1.67 timesimproved 1.67 times

Solid line = perceptual LOD optimizations.  Broken line = no LOD.Solid line = perceptual LOD optimizations.  Broken line = no LOD.
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Sample Results Sample Results -- ReddyReddy

44--5 times improvement in frame 5 times improvement in frame 
rate when using LODrate when using LOD

Size LOD accounts for 90-
95% of improvement

Size LOD accounts for 90-
95% of improvement

ViewView--Dependent Perceptual LODDependent Perceptual LOD

 
Original Model

1,116,720 tris

Eccentricity Opt

126,130 tris

Field of View

200x135 deg
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ViewView--Dependent Perceptual LODDependent Perceptual LOD

Original Model

1,116,720 tris

Ecc + 60 deg/s

17,752 tris

Field of View

200x135 deg

Calculating c/deg Calculating c/deg -- LuebkeLuebke

θθ Fold Fold 
effecteffect

– Use bounding spheres to model extent of change caused by 
the folding a vertex in a hierarchical vertex tree

– Compute spatial frequency of change based upon angular 
projection of sphere (θo fold extent gives frequency of one 
cycle per 2 θo)

–– Use bounding spheres to model extent of change caused by Use bounding spheres to model extent of change caused by 
the folding a vertex in a hierarchical vertex treethe folding a vertex in a hierarchical vertex tree

–– Compute spatial frequency of change based upon angular Compute spatial frequency of change based upon angular 
projection of sphere (projection of sphere (θθoo fold extent gives frequency of one fold extent gives frequency of one 
cycle per 2 cycle per 2 θθoo))

Contrast calculated by comparing intensities of all vertices in original and 
simplified surface (if silhouette edge, compare against brightest and darkest 
intensities in the scene).

Contrast calculated by comparing intensities of all vertices in original and 
simplified surface (if silhouette edge, compare against brightest and darkest 
intensities in the scene).
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“Perceptually Driven Simplification”“Perceptually Driven Simplification”
LuebkeLuebke

(University of Virginia)(University of Virginia)

Movie Movie -- LuebkeLuebke

Enabling TechnologiesEnabling Technologies

�� Head trackingHead tracking
–– Commonly used in virtual reality systemsCommonly used in virtual reality systems
–– Fast head movement = high angular velocityFast head movement = high angular velocity

�� Eye TrackingEye Tracking
–– Required for true perceptual LOD optimizationsRequired for true perceptual LOD optimizations
–– Generally cumbersome and suffers from problems of Generally cumbersome and suffers from problems of 

lag, drift, resolution, etc.lag, drift, resolution, etc.
–– But perhaps head tracking is enough:But perhaps head tracking is enough:

�� Resting gaze orientation ~= head orientationResting gaze orientation ~= head orientation
�� Most saccades occur with 15 deg of gaze point Most saccades occur with 15 deg of gaze point 
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ConclusionsConclusions

–– Perceptual LOD more applicable to Perceptual LOD more applicable to immersive immersive systems:systems:
�� head/eye tracking better than center of displayhead/eye tracking better than center of display
�� extra benefit when user moves head/gazeextra benefit when user moves head/gaze
�� one display per person (multiple viewers possible though)one display per person (multiple viewers possible though)

–– Velocity and eccentricity optimizations should be used in Velocity and eccentricity optimizations should be used in 
conjunction for maximum benefitconjunction for maximum benefit

–– Distance / Size LOD offers the most advantage (e.g. around 90Distance / Size LOD offers the most advantage (e.g. around 90--
95% in non95% in non--immersive immersive system).system).

–– ViewView--dependent LOD system best for maximum resolution dependent LOD system best for maximum resolution 
reductionreduction

–– Supporting Velocity optimizations can give big wins in a dynamicSupporting Velocity optimizations can give big wins in a dynamic
environmentenvironment

–– Less reduction than a nonLess reduction than a non--perceptual system, but can do perceptual system, but can do 
perceptually linear fixed frame rate also.perceptually linear fixed frame rate also.

Further Research AreasFurther Research Areas

–– Need to think about temporal effects of switching between two Need to think about temporal effects of switching between two 
different representations (flicker frequency). The peripheral different representations (flicker frequency). The peripheral 
field is highly sensitive to flicker. Does this even matter?field is highly sensitive to flicker. Does this even matter?

–– Need better perceptual metrics to assess the spatial Need better perceptual metrics to assess the spatial 
frequency and contrast of a computerfrequency and contrast of a computer--generated image or of generated image or of 
a polygonal model.a polygonal model.

Need more results on the Need more results on the 
benefit of using various benefit of using various 
perceptual criteria under perceptual criteria under 
different viewing conditions different viewing conditions 
and display devices (e.g.and display devices (e.g.
immersiveimmersive systems).systems).
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Web ResourcesWeb Resources

Slides for this presentation Slides for this presentation 
http://www.http://www.aiai..srisri.com/~.com/~reddyreddy/talks/s2001//talks/s2001/

Perceptually Modulated LOD Thesis Perceptually Modulated LOD Thesis 
http://www.http://www.aiai..srisri.com/~.com/~reddyreddy/thesis//thesis/

David David Luebke’s Luebke’s VDS Library          VDS Library          
http://http://vdslibvdslib..virginiavirginia..eduedu//

Mike Mike Krus’Krus’ LOD Resources LOD Resources 
http://www.http://www.multimaniamultimania.com/.com/kruskrus/CG/LODS//CG/LODS/

Lee Bull (Pip)’s LOD World Lee Bull (Pip)’s LOD World 
http://www.http://www.cscs..uclucl.ac..ac.ukuk/staff/P.Bull//staff/P.Bull/lodlod//lodlod.html.html

Multiresolution Modeling Multiresolution Modeling 
http://www.http://www.cscs..cmucmu..eduedu/~garland//~garland/multiresmultires//
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The Visual/Temporal The Visual/Temporal 
TradeoffTradeoff

Dynamic LOD is striking a compromise:Dynamic LOD is striking a compromise:
–– VisualVisual: : polyspolys, textures, lighting…, textures, lighting…

–– TemporalTemporal: frame rate, delay…: frame rate, delay…

Most have emphasized visualMost have emphasized visual
Here we examine both in some detailHere we examine both in some detail
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OutlineOutline

Temporal FidelityTemporal Fidelity
Motivating questionsMotivating questions
Temporal BasicsTemporal Basics
Previous ResearchPrevious Research
Answers and ImplicationsAnswers and Implications

Visual Fidelity (Quickly)Visual Fidelity (Quickly)

Future DirectionsFuture Directions

Questions: A Good Mean?Questions: A Good Mean?

Frame rate: what’s “good enough?”Frame rate: what’s “good enough?”
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Questions: How Constant?Questions: How Constant?

Frame rate: how much change?Frame rate: how much change?

or...

Time
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Questions: Pattern Questions: Pattern 
Effects?Effects?

Frame rate: effects of frequency?Frame rate: effects of frequency?

or...
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Other QuestionsOther Questions

Effects of frame rate vs. delay?Effects of frame rate vs. delay?
display continuity vs. agedisplay continuity vs. age

How do effects vary by task?How do effects vary by task?
e.g. placing vs. navigatinge.g. placing vs. navigating

Basics: Frame RateBasics: Frame Rate

Def: displayed samples/secDef: displayed samples/sec
–– NotNot constant, that takes workconstant, that takes work

Frame time: ms/frameFrame time: ms/frame
–– Nonlinear relationshipNonlinear relationship

–– Better predictorBetter predictor
human performance:human performance:
linear delay relationshiplinear delay relationship

0

50

100

150

200

0 10 20 30 40 50 60

Frame Rate (Hz)

Fr
am

e 
T

im
e 

(m
s)



5

Basics: Frame RateBasics: Frame Rate
Refresh rate: display refresh/secRefresh rate: display refresh/sec

–– One frame time = a multiple of refresh timeOne frame time = a multiple of refresh time
–– Mean frame time may not beMean frame time may not be

Display

Renderer

vertical retrace vertical retrace

Time

image generation image generation

display refresh display refresh

Basics: System LatencyBasics: System Latency

Def: age of Def: age of 
displayed sampledisplayed sample
–– some of frame some of frame 

time, plus input time, plus input 
collection timecollection time

–– Also variesAlso varies
renderer

system responsiveness

frame time

tracker

user

user action

tracker input display
output

system latency
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Basics: System Basics: System 
ResponsivenessResponsiveness

Def (SR): delay from Def (SR): delay from 
input to displayinput to display
–– system latency, plus system latency, plus 

delay between event delay between event 
and sampleand sample

renderer

system responsiveness

frame time

tracker

user

user action

tracker input display
output

system latency

Basics: System Basics: System 
ResponsivenessResponsiveness

Only one sample used per frameOnly one sample used per frame
So delay between event and sample:So delay between event and sample:

–– Mean: half frame timeMean: half frame time
–– Variation: random, range 1 frame timeVariation: random, range 1 frame time

So frame time has great effect on SRSo frame time has great effect on SR
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Not So Basic:Not So Basic:
Complex SystemsComplex Systems

VR systems may haveVR systems may have
–– More than one input deviceMore than one input device
–– More than one output deviceMore than one output device

For each I/O linkFor each I/O link
–– Different latency, SRDifferent latency, SR

renderer

system responsiveness

frame time

tracker

user

user action

tracker input display
output

system latency

Temporal Fidelity Control: Temporal Fidelity Control: 
FrameFrame--LatencyLatency

Both frame time and Both frame time and 
latency change latency change 
(FL)(FL)
–– e.g. by varying 3D e.g. by varying 3D 

model complexity model complexity 
after input arrivesafter input arrives

–– SR += 3/2 changeSR += 3/2 change
Change here
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renderer

system responsiveness

frame time

tracker

user

user action

tracker input display
output

system latency

Temporal Fidelity Control: Temporal Fidelity Control: 
FrameFrame--OnlyOnly

Only frame time Only frame time 
changes (FO)changes (FO)
–– e.g. by varying e.g. by varying 

simulation simulation 
complexity before complexity before 
input arrivesinput arrives

–– SR += 1/2 changeSR += 1/2 change

Change here

renderer

system responsiveness

frame time

tracker

user

user action

tracker input display
output

system latency

Temporal Fidelity Control: Temporal Fidelity Control: 
LatencyLatency--OnlyOnly

Only latency Only latency 
changes (LO)changes (LO)
–– e.g. by varying e.g. by varying 

degree of filtering degree of filtering 
before input sentbefore input sent

–– SR += changeSR += change

Change here
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Temporal Fidelity Control: Temporal Fidelity Control: 
SummarySummary

Change Type Abbr Ftm? Ltcy? SR? 
Frame only FO 1 x  0.5 x
Latency only LO  1 x 1.0 x
Frame latency FL 1 x 1 x 1.5 x

 
MoralMoral: not all delay or speedup is equal: not all delay or speedup is equal

–– Differ in frame rate/latency effectsDiffer in frame rate/latency effects
–– Differ in SR effectsDiffer in SR effects

Outline UpdateOutline Update

Temporal FidelityTemporal Fidelity
Motivating questionsMotivating questions
Temporal BasicsTemporal Basics
Previous ResearchPrevious Research
Answers and ImplicationsAnswers and Implications

Visual Fidelity (Quickly)Visual Fidelity (Quickly)

ImplicationsImplications
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Research: Tasks With Research: Tasks With 
PredictionPrediction

If tasks require prediction:If tasks require prediction:
–– Environment is changingEnvironment is changing
–– Must observe, anticipate, actMust observe, anticipate, act

Therefore:Therefore:
–– Need samples for prediction: Need samples for prediction: frame timeframe time
–– Account for sample age: Account for sample age: system latencysystem latency

Research: Tasks With Research: Tasks With 
FeedbackFeedback

If tasks require feedback:If tasks require feedback:
–– Must act, evaluate results, act….Must act, evaluate results, act….

Therefore:Therefore:
–– Must wait for results: Must wait for results: responsivenessresponsiveness
–– Feedback iterations multiply SR effectsFeedback iterations multiply SR effects



11

Research: Catching TasksResearch: Catching Tasks

Catching tasks:Catching tasks:
–– Visually track, manually interceptVisually track, manually intercept
–– e.g. shooting, catching moving objectse.g. shooting, catching moving objects

Prediction important, not feedbackPrediction important, not feedback
–– Expect: At same SR, FL and FO more Expect: At same SR, FL and FO more 

effect than LOeffect than LO

Research: Catching TasksResearch: Catching Tasks

Watson, Richard:Watson, Richard:
–– ~15 Hz “enough” (290 ms)~15 Hz “enough” (290 ms)
–– Examined only FL effectsExamined only FL effects

Watson:Watson:
–– SR change 100+ ms significantSR change 100+ ms significant
–– Perceivable patterns had effectsPerceivable patterns had effects
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Research: Tracking TasksResearch: Tracking Tasks

Tracking tasks:Tracking tasks:
–– Manually track a moving objectManually track a moving object
–– Similar to navigationSimilar to navigation

Both prediction and feedback crucialBoth prediction and feedback crucial
–– Expect: At same SR, FL and FO Expect: At same SR, FL and FO 

slightly more effect than LOslightly more effect than LO

Research: Tracking TasksResearch: Tracking Tasks

Tharp, Bryson (small studies):Tharp, Bryson (small studies):
–– Compared mean FO, mean LOCompared mean FO, mean LO

Obtained similar results:Obtained similar results:
–– Faster SR always helped usersFaster SR always helped users
–– Given same SR, LO better than FOGiven same SR, LO better than FO
–– Difficulty increased SR effectsDifficulty increased SR effects
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Research: Placement TasksResearch: Placement Tasks

Placement tasks:Placement tasks:
–– Move to wellMove to well--known locationknown location
–– e.g. selection, grasping static objectse.g. selection, grasping static objects

Feedback important, not predictionFeedback important, not prediction
–– Expect: SR is key, whether FL, FO or Expect: SR is key, whether FL, FO or 

LOLO

Research: Placement TasksResearch: Placement Tasks

Bryson (small study):Bryson (small study):
–– Given same SR, FO and LO same effectsGiven same SR, FO and LO same effects
–– More SR always betterMore SR always better

Mackenzie & Ware (LO only):Mackenzie & Ware (LO only):
–– SR improved down to 25 msSR improved down to 25 ms
–– Difficulty increased SR effectsDifficulty increased SR effects
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Research: Placement TasksResearch: Placement Tasks

Ware & Ware & BalakrishnanBalakrishnan::
–– Given same SR, FL/FO/LO same effectsGiven same SR, FL/FO/LO same effects

Watson (FL only):Watson (FL only):
–– Difficulty increased SR effectsDifficulty increased SR effects
–– SR change (100+ ms) had effectsSR change (100+ ms) had effects
–– Perceivable patterns had effectsPerceivable patterns had effects

Research Details: TaskResearch Details: Task
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Research Details: PlacementResearch Details: Placement
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Answers: A Good Mean?Answers: A Good Mean?

Predictive tasks:Predictive tasks:
–– “Enough” is quite possible“Enough” is quite possible
–– This applies to SR and frame timeThis applies to SR and frame time

Feedback tasks:Feedback tasks:
–– Really hard to get enough SRReally hard to get enough SR

Answers: How Constant?Answers: How Constant?

Not very:Not very:
–– Up to 100 ms change okay!Up to 100 ms change okay!

Predictive tasks:Predictive tasks:
–– Constancy Constancy imptimpt at low frame ratesat low frame rates

Feedback tasks:Feedback tasks:
–– Constancy Constancy impt impt when mean SR goodwhen mean SR good
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Answers: Pattern Effects?Answers: Pattern Effects?

Yes, there are effects:Yes, there are effects:
–– Only when change is severeOnly when change is severe
–– Only when frequencies are largeOnly when frequencies are large

More research needed:More research needed:
–– Transient change?Transient change?
–– Asymmetric change?Asymmetric change?

�� trend: worsening SR is worse than improving SRtrend: worsening SR is worse than improving SR

Other AnswersOther Answers

Effects of frame rate vs. SR?Effects of frame rate vs. SR?
–– Generally, SR dominatesGenerally, SR dominates

How do effects vary by task?How do effects vary by task?
–– Predictive: frame timePredictive: frame time
–– Feedback: SRFeedback: SR
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LOD ImplicationsLOD Implications

Improve SR before frame timeImprove SR before frame time
Easier to get “enough” frame timeEasier to get “enough” frame time

Only minor efforts to control changeOnly minor efforts to control change
User can tolerate quite a bitUser can tolerate quite a bit

LOD ImplicationsLOD Implications

After change, patternsAfter change, patterns
Control only large scale changesControl only large scale changes
Avoid repetitive patterns of changeAvoid repetitive patterns of change

Control should be sensitive to task!Control should be sensitive to task!
According to predictive, feedback According to predictive, feedback 
makeupmakeup
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LOD ImplicationsLOD Implications

If delay (speedup) is necessary If delay (speedup) is necessary 
(possible):(possible):
Prefer FO, LO, and FL, in that order (reverse Prefer FO, LO, and FL, in that order (reverse 
for speedup)for speedup)

Control should be sensitive to difficultyControl should be sensitive to difficulty
Higher difficulty, better temporal detailHigher difficulty, better temporal detail

LOD ImplicationsLOD Implications

Feedback can compensate for delay, diffFeedback can compensate for delay, diff
Improved visual feedback != more Improved visual feedback != more polyspolys
Especially in tasks depending on feedbackEspecially in tasks depending on feedback

Visual/temporal detail interactions?Visual/temporal detail interactions?
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Visual vs. TemporalVisual vs. Temporal

Information is the key:Information is the key:
It can be It can be spatiallyspatially inaccurate (wrong place)inaccurate (wrong place)
Or, Or, temporally temporally inaccurate (wrong time)inaccurate (wrong time)

How to compare these inaccuracies?How to compare these inaccuracies?

I/O DifferencingI/O Differencing

Key observation: wrong time = wrong placeKey observation: wrong time = wrong place
complex vs. simple models Input (I) vs. displayed (O) positions
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I/O Differencing TaskI/O Differencing Task

I/O Differencing ResultsI/O Differencing Results
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I/O Differencing ResultsI/O Differencing Results
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Visual Fidelity ControlVisual Fidelity Control

When controlling visual fidelity:When controlling visual fidelity:
How well are we doing?How well are we doing?
How might we do better?How might we do better?

For answers, we needFor answers, we need
Experimental measures of visual fidelityExperimental measures of visual fidelity
Automatic measures of visual fidelityAutomatic measures of visual fidelity

Experimental Experimental Vis Vis FidelityFidelity

Psychophysical experimentationPsychophysical experimentation
Nice internal validity, butNice internal validity, but
External validity is a big concern!External validity is a big concern!

We studied 3 higher level measuresWe studied 3 higher level measures
Forced choiceForced choice
RatingsRatings
Naming timesNaming times
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Experimental Experimental Vis Vis FidelityFidelity

Our independent variablesOur independent variables
2 simplification algorithms: 2 simplification algorithms: QSlimQSlim, Cluster, Cluster
3 levels of simplification: 3 levels of simplification: 0%, 50%, 80%0%, 50%, 80%
2 groups of stimuli: 2 groups of stimuli: animals, objectsanimals, objects

36 experimental stimuli36 experimental stimuli
36 subjects36 subjects

Some Typical StimuliSome Typical Stimuli

Original Models
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Some Typical StimuliSome Typical Stimuli

50% Simplified

clustering

qslim

Some Typical StimuliSome Typical Stimuli

80% Simplified

clustering

qslim
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Naming Time ResultsNaming Time Results

Rating & Choice ResultsRating & Choice Results
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Measure ComparisonsMeasure Comparisons
Simp
Alg

Simp
Level

Object
Type

Naming
Time

QSlim
better

80%
worst

Animals
harder

Ratings QSlim
better

80%
worst

Forced
Choice

QSlim
better

80%: Q
even

better

Animals:
Q even
better

Lessons:

Measures  
agree with
intutition

Measures 
disagree on 
object type

ExpmtExpmt/Auto Correlations/Auto Correlations

Naming Times Ratings Choices
all animal artifact all animal artifactAutomatic

Measure q c q c q c q c q c q c all an art
BM
MSE
MetroMn
MetroMSE
MetroMax
MetroVol

Stat Sig Correlation

Correlation < .2 Stat Insig Corr > .2
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Implications, QuestionsImplications, Questions

Some support for:Some support for:
Measuring fidelity with 3D distanceMeasuring fidelity with 3D distance
Quadric metrics (weaker in artifacts)Quadric metrics (weaker in artifacts)

Questions:Questions:
LuebkeLuebke//Reddy’s Reddy’s measures effective?measures effective?
Modeling naming times: distillation effect?Modeling naming times: distillation effect?
“Top“Top--down” simplification by object type?down” simplification by object type?
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Abstract 
We present a framework for accelerating interactive rendering, 
grounded in psychophysical models of visual perception.  This 
framework is applicable to rendering techniques that regulate 
resolution�and hence rendering load�using a hierarchy of local 
simplification operations.  Our method drives those local 
operations directly by perceptual metrics: the effect of each 
simplification on the final image is considered in terms of the 
contrast the operation will induce in the image and the spatial 
frequency of the resulting change.  A simple and conservative 
perceptual model determines under what conditions the 
simplification operation will be perceptible, enabling imperceptible 
simplification in which operations are performed only when judged 
imperceptible.  Alternatively, simplifications may be ordered 
according to their perceptibility, providing a principled approach to 
best-effort rendering.  Our approach addresses many interesting 
topics in the acceleration of interactive rendering, including 
imperceptible simplification, silhouette preservation, and gaze-
directed rendering.  We demonstrate our framework applied to two 
quite different multiresolution rendering paradigms: view-
dependent polygonal simplification and the QSplat point-based 
rendering system of Rusinkiewicz and Levoy [26].   

1 Introduction 
Interactive rendering of large-scale geometric datasets continues to 
present a challenge for the field of computer graphics.  Such 
interactive visualization is an enabling technology for many far-
flung fields, ranging from scientific and medical visualization to 
entertainment, architecture, military training, and industrial design.  
Despite tremendous strides in computer graphics hardware, the 
growth of large-scale models continues to outstrip our capability to 
render them interactively.  A great deal of research has therefore 
focused on algorithmic techniques for managing the rendering 
complexity of these models.  Level of detail management offers a 
powerful tool for this task.  Level of detail or LOD methods hinge 
on the observation that most of the complexity in a detailed 3-D 
model is unnecessary when rendering that model from a given 
viewpoint.  These methods simplify small, distant, or otherwise 
unimportant portions of the scene, reducing the rendering cost 
while attempting to retain visual fidelity.   

Visual fidelity, however, has traditionally been difficult to 
quantify, so most LOD algorithms settle for geometric measures of 
quality.  For example, the most common use of LOD management 
is polygonal simplification, in which a 3-D polygonal model is 
replaced with a simpler model using fewer polygons.  Here 
geometric fidelity of the simplified surface may be measured with 
the distance of that surface from the original mesh, or with the 
volume of distortion created by the simplification.  Such metrics 
are useful for certain CAD applications, such as finite element 
analysis, and for certain medical and scientific visualization tasks, 
such as co-registering surfaces or measuring volumes.  Probably 
the most common purpose of simplification, however, is to 
accelerate interactive rendering.  For this purpose, the most 

important measure of fidelity is not geometric, but perceptual: 
does the simplification look like the original? 

In this paper, we describe a framework for LOD management 
guided directly by perceptual metrics.  These metrics derive from 
the contrast sensitivity function or CSF, a measure of the 
perceptibility of visual stimuli.  Testing local simplification 
operations against a model of the CSF provides a principled 
approach to the tradeoff between fidelity and performance.  This 
approach addresses several interesting problems in regulating 
level of detail: 

• Imperceptible simplification: We evaluate simplification 
operations by the �worst-case� contrast and spatial 
frequency they induce in the image, and apply only those 
operations judged imperceptible.  We hypothesize that the 
resulting simplified model is indistinguishable from the 
original, and test that hypothesis in this paper. 

• Best-effort simplification: Often we wish to render the best 
image possible within time or polygon constraints.  Ordering 
simplification operations according to the viewing distance 
at which their effect on the image becomes perceptible 
furnishes a framework for simplifying to a budget. 

• Silhouette preservation: Silhouettes have long been 
recognized as visually important, but how important?  Our 
model quantifies silhouette importance by accounting for 
their increased contrast, and preserves them accordingly. 

• Gaze-directed rendering: If the system can monitor the 
user�s gaze, the image may be simplified more aggressively 
in the periphery than at the center of vision.  We can extend 
our model to incorporate eccentricity, or the falloff of visual 
acuity in the periphery. 

Our framework applies to any rendering system based on 
hierarchical simplifications or approximations.  Many interactive 
rendering acceleration schemes fall into this category, including 

Figure 1: Perceptually driven QSplat.  Splats drawn in blue
have been simplified.  Left: QSplat�s highest quality rendering
mode traverses until each splat is less than a pixel in size.
Right: perceptually driven rendering traverses nodes only
where dictated by the local contrast and spatial frequency.
Our model can also account for gaze direction: here, the
user�s gaze rests on Lucy�s torch. 
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the use of polygonal simplification, texture-based imposters, and 
some forms of image- and point-based rendering.  We have applied 
perceptually driven interactive rendering to two such schemes: 
view-dependent polygonal simplification and the point-based 
renderer QSplat. 

Below we briefly present some background on visual perception, 
followed by an overview of our framework.  We illustrate this 
overview using QSplat, which was relatively straightforward to 
dovetail with perceptually driven rendering.  We then turn to the 
application of our framework to polygonal simplification, which 
was more involved.  We describe the underlying algorithm and the 
evaluation of contrast and spatial frequency induced by 
simplification, which is ultimately the heart of the problem.  
Finally, we consider our framework in relation to previous work on 
perceptually guided rendering, and close with some thoughts on 
future extensions and improvements.  

2 The Contrast Sensitivity Function 
A large body of perceptual psychology literature focuses on the 
perceptibility of visual stimuli.  The simplest relation established in 
this literature is Weber’s law, which predicts the minimum 
detectable difference in luminance between a test spot on a 
uniform visual field.  Weber�s law states that at daylight levels the 
threshold difference in luminance increases linearly with 
background luminance.  Interesting scenes are not uniform, 
however, but contain complex frequency content.  Outside a small 
frequency range, the threshold sensitivity predicted by Weber�s 
law drops off significantly.  Many perception studies have 
therefore examined the perceptibility of contrast gratings, 
sinusoidal patterns that alternate between two extreme luminance 
values Lmax and Lmin.  Campbell first characterized the 
perceptibility of a contrast grating in terms of its contrast and 
spatial frequency [4].  Contrast grating studies use Michaelson 
contrast, defined as (Lmax – Lmin) / (Lmax + Lmin), and spatial 
frequency, defined as the number of cycles per degree of visual 
arc.  The threshold contrast at a given spatial frequency is the 
minimum contrast which can be perceived in a grating of that 
frequency, and contrast sensitivity is defined as the reciprocal of 
threshold contrast.  The contrast sensitivity function (CSF) plots 
contrast sensitivity against spatial frequency, and so describes the 
range of perceptible contrast gratings [Figure 2a].  

Of course, most interesting images are more complex than the 
simple sinusoidal patterns used in contrast gratings.  Campbell 
found that the perceptibility of complex signals could be 
determined by decomposing a signal into sinusoidal components 
using Fourier analysis [5].  In particular, if no frequency 

component of a signal is perceptible, the signal will not be 
perceptible.   

Note that the CSF predicts the maximum perceptibility of a 
stationary grating at the center of view; many other factors can 
lower contrast sensitivity.  Among these is eccentricity, or 
distance from the direction of gaze.  The fovea is the region of 
highest sensitivity on the retina, occupying the central 1º or so of 
vision.  Visual acuity, measured as the highest perceptible spatial 
frequency, is significantly lower in the visual periphery than at 
the fovea.  The relationship between visual acuity and 
eccentricity, defined as angular distance from the fovea, was first 
characterized in humans by Rovamo and Virsu [25].  By 
extending our perceptual model to incorporate eccentricity, we 
can predict the visibility of peripheral features for use in gaze-
directed rendering. 

3 Overview  
Our goal is to analyze LOD-based rendering algorithms within a 
principled perceptual framework inspired by the contrast grating 
studies described above.  We map the change resulting from a 
local simplification operation to a worst-case contrast grating, 
meaning a grating with the most perceptible combination of 
contrast and frequency possibly induced by the operation.  We 
apply the simplification only if we would not expect a grating 
with that contrast and frequency to be visible.  Our hypothesis: if 
we can isolate the most perceptible frequency component 
possibly induced by a simplification operation, and determine that 
a contrast grating at that frequency would not be visible, we can 
perform the operation without perceptible effect. 

3.1 Determining the Worst Case  
To determine the worst-case frequency and contrast efficiently, 
we make some conservative simplifying assumptions.   First, we 
observe that the peak contrast sensitivity occurs at approximately 
2-4 cycles per degree, and that most local simplification 
operations on a complex model affect only much higher 
frequencies.  We therefore assume that contrast at lower spatial 
frequencies is more perceptible than at higher frequencies 
(Section 6.1 describes how we adjust our perceptual model to 
ensure this assumption holds).  The minimum frequency 
component of a region in the image spanning n degrees of the 
user�s angular field of view is one cycle per 2n degrees.  Put 
another way, the maximum wavelength needed to represent a 
region of the image is twice the maximum spatial extent of that 
region [Figure 3].  Consequently, finding the worst-case 
frequency induced by a simplification reduces to finding the 
screen-space extent of the affected region. 

For the worst-case contrast, we determine a bound on the 
maximum change in luminance among all the pixels affected by 
the simplification.  Put another way, the worst-case contrast of a 

Figure 2: (a) The contrast sensitivity function measures the
perceptibility of visual stimuli (sinusoidal gratings) in terms
of their contrast and spatial frequency (cycles per degree).
(b) The shape of the CSF is attributed to the aggregate
response of multiple bandpass mechanisms in the visual
system. Courtesy Martin Reddy, Mahesh Ramasubramanian.

Figure 3: We use a conservative approximation of the
change in intensity (error) induced by folding a node.  Here
the black line represents the original surface and the blue
line the simplified surface.   



3 

simplification operation is the maximum contrast between an 
image of the affected region at full resolution and an image of the 
region simplified.  For 3-D models, there are two basic cases: 

• The entire affected region lies interior to a surface that 
entirely faces the viewer.  This is the simplest case: the 
contrast between the original region and the folded region is 
completely determined by the luminance of the local surface 
before and after the fold. 

• The affected region includes a silhouette edge.  This expands 
the possible contrast incurred by the simplification to include 
the portion of the scene behind the affected region, since 
simplifying the surface may expose a very bright or very dark 
feature occluded before simplification.  

Consequently, silhouette regions of the object are simplified less 
aggressively�exactly the behavior we should expect in a 
perceptually driven simplification algorithm.  Note, however, that 
even at these high contrast levels silhouette regions can still be 
simplified if they represent very fine details (high spatial 
frequencies) or are in the viewer�s peripheral vision (high 
eccentricity). 

3.2 An Empirical Perceptual Model 
Many researchers have characterized the contrast sensitivity 
function.  In early work, Kelly derived an abstract relationship for 
the perceptibility of sinusoidal gratings over a narrow range: 
CT = α2e-α [14].  Here CT represents the threshold contrast and α 
represents spatial frequency.  The more accurate CSF curve given 
by Barten [2] is used in recent advanced global illumination 
algorithms, such as the physically based metric of 
Ramasubramanian, which also account for adaptation effects due 
to background illumination [23][3].  Modern perceptual theory 
attributes the shape of the CSF to the combined response curves of 
multiple bandpass mechanisms in the visual system, each 
processing only a small range of the visible spatial frequency 
spectrum [Figure 2b].  This multiscale visual processing can be 
emulated with a Laplacian pyramid for spatial decomposition [17].  
Current perceptual rendering techniques also account for contrast 
masking, which represents the visual system�s decreased contrast 
sensitivity in the presence of strong patterns.  This can further 
increase the allowable error in an image [9][23][3]. 

Unfortunately, these sophisticated perceptual models, which 
employ the latest advances in understanding perception, are far too 
costly for the interactive framework we propose.  In our 
framework, thousands of simplification operations must be 
considered every second, leaving less than a millisecond to 
evaluate the induced contrast and frequency.  Clearly, we must 
forego the state-of-the-art perceptual models used in current global 
illumination work for a model that is simple, fast, and 
conservative.  

To achieve simplicity and speed while still accounting for real-
world factors that affect perception, such as ambient light, we 
chose to take an empirical approach.  Recall our hypothesis: a 
simplification operation, mapped to a �worst-case� contrast 
grating, can be performed imperceptibly if that grating would not 
be perceptible.  We build our perceptual model directly from 
contrast grating tests performed under the same conditions�
room illumination, monitor, etc�under which our final system 
will run.  A calibration procedure, detailed below, tests the ability 
of a user to detect contrast gratings, recording threshold contrast 
over a wide range of spatial frequency and eccentricity.  We then 
build a lookup table from the resulting CSF curves and use linear 
interpolation at runtime to determine whether the user can 
perceive a given contrast at a given spatial frequency and 
eccentricity.   

This model could certainly be improved, but we chose to focus on 
developing a framework for driving interactive rendering with a 
perceptual model, rather than on developing the model itself.  Our 
empirical model is simple to implement and works well in 
practice; Figure 6 shows example CSF curves determined from a 
typical calibration procedure. 

θ N

Figure 5: The lowest spatial frequency that can be affected
by a node spanning θº of visual arc has one cycle per 2θº. 

Figure 4: Estimating contrast in QSplat.  Here the small
circles represent leaf nodes (samples) with their bounding
spheres.  The sphere of an internal node N (drawn in red)
must contain the spheres of all its descendents (also in red).
To compute contrast induced by simplifying N, we must also
account for nodes intersecting N (drawn in blue), since these
nodes may be occluded by N�s splat. 

Spatial Frequency vs. Threshold Contrast
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from one user�s calibration. 
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4 Perceptually Driven Point Rendering 
The QSplat point-rendering system lends itself nicely to our 
perceptual rendering framework.  While Rusinkiewicz and Levoy 
describe many careful optimizations, tradeoffs, and design 
decisions that make QSplat exceptionally fast [26], at its heart it is 
a simple algorithm.  Qsplat uses a hierarchy of bounding spheres 
for culling, rendering, and level of detail management.  The leaf 
nodes in this hierarchy of spheres form a dense tiling of the 
original surface and typically represent samples from a 3-D 
scanning device.  Internal nodes completely contain the spheres of 
their descendents, and average the color and normal of their 
descendents.  The hierarchy is traversed in a view-dependent 
fashion: backfacing and invisible nodes are skipped and their 
descendents not traversed, while nodes below a certain size on 
screen are drawn (using a splat) without descending further.  The 
core simplification operation in QSplat, then, is to draw a node 
splat rather than traverse its descendents. 

4.1 Applying the Framework 
To apply perceptually guided rendering to QSplat, we must 
evaluate the spatial frequency and contrast induced by a 
simplification.  Since the sphere at each node completely contains 
all its descendents, we can bound the affected region of the image 
by the projected screen-space extent of the sphere.  Since QSplat 
already computes this diameter, we need only convert it into the 
appropriate spatial frequency.   

Determining Maximal Contrast 

Given a worst-case spatial frequency for the change induced by 
folding a node, we next need to compute the worst-case contrast of 
that change.  Recall that Michaelson contrast depends on Lmax and 
Lmin, the maximum and minimum brightness of the region affected 
by the fold operation.  Brightness, or luminance, is measured in 
cd/m2, so we must convert OpenGL vertex colors to actual 
luminance. 

Simplifying a node N draws its splat rather than the splats of its 

descendents, but may also occlude nodes that do not descend 
from N.  Though it is difficult to determine which nodes may be 
occluded in certain pathological cases, in practice we can account 
for occlusion by considering all nodes intersecting the bounding 
sphere of N [Figure 4].  The maximum contrast that can be 
caused by folding N is then determined by the color of N and the 
range of colors of nodes intersecting N.  We then calculate the 
induced Michaelson contrast by converting all colors to 
luminance, and comparing the minimum and maximum 
luminance of the original surface to the luminance of the 
simplified node.  We can efficiently compute this information 
during preprocessing, quantize contrast to 8 bits, and store it with 
the node.   

Of course, this precomputed contrast becomes invalid if the node 
lies on the silhouette.  QSplat stores a normal and normal cone 
[28] with each node, and evaluates whether the node represents a 
surface region that faces entirely away from the viewer (for 
backface culling) or entirely towards the viewer (to disable 
backface culling).  We can thus identify silhouette nodes with no 
additional computation, since all nodes that are neither entirely 
backfacing nor entirely frontfacing might lie on the silhouette.  
As with contrast, we need to modify the preprocessing to account 
for contained nodes when computing normal cones.  For 
simplicity, and to avoid extra storage, we assume that simplifying 
any silhouette node could induce the maximum possible contrast. 

Putting It All Together 

Given the worst-case contrast and spatial frequency, both readily 
available at run-time, our perceptually driven algorithm for 
QSplat rendering is nearly as simple as the original:  

TraverseHierarchy(node)
{

if (node outside view frustum)
skip this branch

if (node is backfacing)
skip this branch

 // Worst-case frequency has period twice sphere diameter: 
frequency = 1/(4*node->radius);
if (node is frontfacing)

contrast = node->contrast;
else

// Node is on silhouette, use maximum possible contrast
contrast = maxContrast;

if (IsPerceptible(frequency, contrast)
// Simplifying node would be perceptible, keep going 
foreach child of node

TraverseHierarchy(child);
else

// Can simplify node imperceptibly  
DrawSplat(node);

}

Here spatial frequency is represented in cycles per radian.  The 
function IsPerceptible() looks up the given contrast and 
frequency and returns TRUE if simplifying the node to a single 
splat might be perceptible.  In practice, we store the lookup table 
in units of wavelength rather than frequency to avoid the extra 
divide.  If gaze-directed rendering is desired, the traversal 
function calculates angular distance from the gaze point to the 
node, and passes this value to IsPerceptible() as eccentricity. 

Figures 1 and 7 demonstrate our perceptually driven QSplat 
system.    

Figure 7:  Gaze-directed rendering.  Left: At high quality QSplat
uses 2.9 million points to render Lucy.  Right: With the user�s
gaze 29o away, our system imperceptibly simplifies the model to
0.8 million points.  Inset: at this distance all nodes are simplified.
Originally rendered at 1600x1200 on a 23� monitor. 
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5 Perceptually Driven Polygonal 
Simplification 

Regulating scene complexity and rendering time by simplifying 
small or distant objects was first proposed in Clark�s seminal 1976 
paper [6].  The basic approach described there remains the most 
common approach today: create several versions of each object at 
progressively coarser levels of detail in a preprocess, and choose at 
run-time which version (called LODs) will represent the object.  
The past decade has seen a flurry of research into polygonal 
simplification: algorithms for generating coarse LODs from full-
resolution polygonal models and for managing which LODs 
replace each object.  Several recent surveys examine the field of 
polygonal simplification [11][22][19]; in Section 7 we examine 
some algorithms relevant to perceptually based rendering. 

One difficulty with traditional LOD-based approaches is their 
reliance on a few discrete levels of detail to represent each object.  
This limits the degree to which perceptual metrics can be applied, 
since the entire object must be simplified uniformly.  For example, 
silhouette details tend to be more perceptible than interior details 
because of higher contrast, so the entire object must be treated as if 
it were on the silhouette. Similarly, if the user�s eye rests on any 
portion of the object, a system that accounts for eccentricity must 
treat the entire object as if it were under direct scrutiny.  The 
worst-case assumptions of per-object LOD can severely handicap 
perceptually guided polygonal simplification. 

5.1 View-Dependent Simplification 
View-dependent simplification methods offer a solution.  Rather 
than calculating a series of static levels of detail in a preprocess, 
view-dependent systems build a dynamic data structure from 
which a desired level of detail may be extracted at run time.  
Objects in a view-dependent algorithm may span multiple 
resolutions, solving the worst-case behavior of traditional LOD.  
For example, portions of the object under the viewer�s gaze can be 
represented at higher fidelity than portions in the peripheral vision, 
and regions of the object moving slowly across the visual field 
could utilize higher resolution than fast-moving regions. 

Several researchers have independently proposed view-dependent 
algorithms, including Hoppe, Luebke, and Xia [12][18][29].  These 
algorithms share a common feature: each is a hierarchy of vertex 
merge operations that can be applied or reversed at run-time.  Our 
chief contribution is a method for evaluating the perceptibility of a 
vertex merge operation, using factors such as contrast, spatial 
frequency, and eccentricity.  We have implemented our system 
using VDSlib, a public-domain library based on the view-
dependent simplification framework of Luebke [20].  VDSlib 
allows users to plug in custom callbacks for building, culling, 
simplifying, and rendering the vertex tree.  We first augment the 
nodes of a VDSlib vertex tree with data specific to our perceptual 
simplification process, such as the contrast induced by a fold 
operation and the normal mask used for silhouette detection.  Then 
at run time, our callback examines nodes, using contrast, spatial 
frequency, and possibly eccentricity to decide whether VDSlib 
should fold the node.  Before describing the details of this process, 
we briefly review the VDSlib algorithm and notation. 

The main data structure of VDSlib is the vertex tree, a hierarchical 
clustering of vertices.  Vertices from the original model are 
grouped with nearby vertices into clusters, then the clusters are 
clustered together, and so on.  Leaf nodes of the tree represent a 

single vertex from the original model; interior nodes represent 
multiple vertices clustered together, and the root node represents 
all vertices from the entire model, merged into a single cluster. In 
VDSlib parlance, a node N supports a vertex V if the leaf node 
associated with V descends from N.  Similarly, N supports a 
triangle T if it supports one or more of the corner vertices of T.  
The set of triangles in the model supported by a node is called the 
region of support of the node. 

Each node stores a representative vertex called the proxy.  For 
leaf nodes, the proxy is exactly the vertex of the original model 
that the node represents; for interior nodes, the proxy is typically 
some average of the represented vertices.  Folding a node merges 
all of the vertices supported by that node into the node�s single 
proxy vertex.  In the process, triangles whose vertices have been 
merged together are removed from the scene, decreasing the 
overall polygon count.  Since folding a node is the core 
simplification operation of VDSlib, to apply our perceptual 
framework we must evaluate the contrast and spatial extent of the 
change in the rendered image induced by a fold. 

5.2 Applying the Framework: VDSlib 
The effect of folding a node in VDSlib is more complex than the 
effect of drawing a splat in QSplat.  As the vertices and triangles 
supported by the node merge and shift, features in the image may 
shrink, stretch, or disappear completely.  Shifting triangles on the 
visual silhouette may expose previously occluded features.  To 
analyze the effect of folding a node, we should consider all of 
these changes.  One possibility, recently demonstrated by 
Lindstrom and Turk for static LOD generation, is to render the 
scene before and after the operation and analyze the resulting 
images [16].  At present, however, the requisite rendering and 
image processing appears too expensive for dynamic 
simplification.  Instead, we want a conservative worst-case bound 
on the changes in the image caused by folding the node.  Since 
our goal is to evaluate a hypothetical change at least as 
perceptible as any changes that folding actually incurs, we 
consider the removal of a feature with worst-case size and 
contrast. 

Spatial Frequency: Estimating Extent 

Again, the minimum frequency induced by a simplification is 
determined by the spatial extent of the resulting change in the 
image.  Notice that features in the image affected by a fold 
consist of triangles connecting vertices involved in the fold.  The 
largest feature that can be removed or exposed by geometric 
distortion upon folding a node is therefore constrained by the 
distance vertices move during the fold.  Thus, the problem of 
computing the minimum frequency induced by folding a node 
reduces to computing the screen-space extent of all vertices 
supported by the node.1  As with QSplat, we use bounding 
spheres to estimate this extent, associating with each node a tight-
fitting sphere that contains all vertices in the node�s region of 
support.  The angular extent of these bounding spheres, as seen 
from a given viewpoint, can be calculated very quickly.  The 
minimum frequency affected by folding a node is then one cycle 

                                                                 
1 Technically, this holds when the model is flat shaded; for 
Gouraud-shaded models, adjacent vertices should also be 
included.  However, we have not found this necessary in practice. 
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per two degrees of angular extent spanned by the node�s bounding 
sphere [Figure 4]. 

Contrast: Estimating Intensity Change  

Determining the exact contrast induced by folding a node would be 
as expensive as rendering the unfolded geometry.  Instead, we 
obtain a conservative lower bound by comparing the intensities of 
all the vertices the node supports in the original model with the 
intensities of the vertices in the simplified surface [Figure 3].  The 
greatest difference between the intensities of the surface vertices 
before folding and after folding bounds the maximum contrast 
between the simplified surface and the original surface, since in a 
Gouraud-shaded model extremes of intensity always occur at the 
vertices.  This conservative test may overestimate the contrast 
induced by folding, but will not underestimate it.   

When the node�s region of support includes a silhouette, we must 
be even more conservative.  Lacking knowledge about what lies 
behind the model, we must assume the worst: moving a silhouette 
edge might expose the darkest or brightest object in the scene, 
including the background.  Hence we must compare the range of 
vertex intensities of the node�s region of support against the 
brightest and darkest intensities in the scene, and use the maximum 
possible difference in intensity for calculating the contrast induced 
by the fold.   

Determining Silhouette Nodes 

Since nodes affecting silhouette edges must be treated differently, 
we require an efficient method for identifying such nodes.  For a 
given view, we define silhouette nodes as those nodes supporting 
both front-facing and back-facing triangles in the original mesh.  
We initially employed Shirman�s cone of normals approach [28], 
used by both Luebke and Hoppe [18][12], to determine silhouette 
nodes.  Unfortunately, the cone of normals sometimes proves 
overly conservative, especially in models with sharp edges; we 
found that too many interior polygons were being classified as 
belonging to silhouette nodes.  Instead, we used a bitwise approach 
inspired by the rapid backface culling technique of Zhang and Hoff 
[30].  We map the Gauss sphere of normal space to a normal cube 
whose faces are tiled into cells, in effect quantizing the space of 
normals.  Each node in the model stores a normal mask, a bit 
vector representing the normals of all its supported triangles.  A bit 

in the mask is set if a triangle normal falls within the 
corresponding cell of the normal cube.   

The accuracy of the normal mask is bounded only by the number 
of cells, which depends on the length of the bit vector.  This 
improves significantly over the cone of normals, which can 
greatly overestimate the range of normals.  Normal masks are 
efficient to compute, since they can be propagated up the vertex 
tree using bitwise-OR operations.  Testing whether the node 
might lie on the silhouette can also be made very efficient by 
precomputing two bitmasks, representing the space of normals 
that might be backfacing and frontfacing, respectively. A node 
may be on the silhouette if its normal mask overlaps with both the 
frontfacing and the backfacing bitmasks.  The test to classify a 
silhouette node therefore reduces to two bitwise-AND operations, 
whose cost depends on the length of the bit vector.  We chose 48 
bytes (64 bits per face of the normal cube) for accuracy, but if 
memory is at a premium, fewer bits could be used to trade off 
accuracy for compactness. 

5.3 Perceptually Guided Best-Effort Rendering 
Imperceptible simplification makes a guarantee about the visual 
fidelity of the simplified scene.  Often, however, a guarantee 
about the complexity, and thus rendering time, is desired instead.  
VDSlib supports triangle budget simplification, which allows the 
user to specify how many triangles the scene should contain.  
Using a user-specified run-time error metric, VDSlib then 
minimizes the total error induced by all folded nodes within this 
triangle budget constraint.  Internally, VDSlib performs triangle 
budget simplification using a greedy approach. A priority queue 
of boundary nodes is sorted by induced error, as evaluated by a 
user-supplied callback.  The node N with the greatest error is 
unfolded, adding some triangles to the scene.  N is then removed 
from the priority queue and its children inserted back into the 
queue.  This process iterates until unfolding the top node of the 
queue would exceed the triangle budget. 2  

For principled best-effort rendering, then, we must generate a 
sound perceptual measure of the error introduced by folding a 
node. The key is to recast our metric for evaluating the 
                                                                 
2 Note that this assumes error decreases monotonically; folding a 
node should not ind ce more error than folding its parent. 

Figure 8: The original Stanford Bunny model (69,451 faces) and a simplification by our perceptually driven system (29,866 faces).
In this view the user�s gaze is 29o from the center of the bunny�equivalent to looking at the page number on this page from a
distance of 10�.  Note that the silhouette is well preserved, along with strong interior details (the line of the haunch, the shape of the
eye, etc.) while subtle bumps on the surface are simplified. 
u
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perceptibility of fold operations.  Rather than a binary 
perceptible/not perceptible decision, we need a scalar to express 
how perceptible a fold operation could be.  We chose to cast the 
question in terms of distance: how far would the viewer have to be 
from the screen before the node could be folded imperceptibly? 
The answer can be computed from our current perceptual model, in 
effect by inverting our lookup tables.  Rather than computing the 
spatial frequency of a node and looking up the threshold contrast at 
which folding is perceptible, we use the precomputed contrast 
induced by folding and look up the threshold spatial frequency.  
From this we can compute the distance at which folding the node 
would be perceptible, and sort nodes in the priority queue by this 
distance. 

To recap, we order folds based on the viewing distance at which 
they become perceptible.  This provides a convenient framework 
for best-effort triangle budget simplification, and an intuitive 
physical measure of the fidelity achieved: after simplifying to the 
user-specified number of triangles, the system can report the 
distance at which that simplification should be imperceptible. 

5.4 Results 
All results given are on an 866 MHz Pentium III computer with 
NVidia GeForce2 graphics.  Figures 8 and 9 show models 
simplified with our perceptually driven algorithm.  Since we are 
guaranteeing imperceptible simplification, the reductions in 
polygon count may seem modest.  However, these results and the 
user study below clearly show that perceptually driven 
simplification can reduce model complexity without visual effect.     

Perceptually driven best-effort rendering may be of more use to 
many 3-D applications.  Figure 9 compares our results to VDSlib�s 
built-in triangle budget rendering, which orders fold operations 
only by size of the node.  Note that the perceptually driven 
algorithm preserves more triangles near silhouettes, and simplifies 
more aggressively in regions of low contrast. 

6 Implementation and Evaluation 

6.1 Calibration: Building a Perceptual Model 
The goal of our calibration step is to build a simple empirical 
model of threshold contrast across different values of spatial 
frequency and eccentricity.  Building this model at runtime allows 
us to account for factors that affect perception but are not likely to 
vary over the course of a viewing session, such as room 
illumination and visual acuity of the individual user.  During the 
calibration, the user fixates on a target while a grating fades in, 
slowly increasing in contrast.  The user is instructed to press the 
mouse button when something becomes visible.  To verify that 
the user actually saw the grating, he then clicks on it (without 
looking away from the target).  By varying the spatial frequency 
and eccentricity of the gratings presented to the user, we find the 
threshold contrast across these parameters [Figure 6].  From the 
data sampled during calibration we build the threshold contrast 
lookup table used at runtime. 

Recall that our perceptual model assumes low frequencies are 
more perceptible than high frequencies, so that we can use node 
spatial extent to determine a worst-case contrast.  This 
assumption holds true for most simplification operations we are 
concerned with, which extend a few pixels at most.  To ensure 
that we make a conservative choice, we modify our lookup table 
to effectively clamp the threshold contrast below the most 
sensitive frequencies. 

We must also calibrate the monitor, in order to translate 24-bit 
OpenGL color values into luminance values (cd/m2) used by our 
definition of contrast.  This step involves measuring with a 
photometer the light levels produced by different red, green, and 
blue OpenGL intensities, and building a lookup table from the 
results.  Fortunately, this part of the calibration need be repeated 
only as often as monitor drift warrants. If full precision were not 
necessary, simple gamma correction would suffice.   

Figure 9: Perceptually driven best-effort simplification.  Both images show the horse model (originally 96,966 faces) reduced to
18,000 faces using triangle budget rendering in VDSlib.  Left, the default VDSlib error metric uses screenspace node size, leading to
unnecessarily even tesselation.  Right, our perceptually driven metric uses fewer polygons in interior and low-contrast regions. 
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6.2 User Study: Evaluating Imperceptibility  
We performed a user study to evaluate our system more formally, 
determining whether our algorithm can indeed produce a 
simplification imperceptible from the original model.  The study 
tested whether subjects could perceive the difference between a 
rendering of a full-resolution model and a rendering of a model 
simplified with our algorithm.  If our hypothesis holds, a subject�s 
ability to discern the simplification will be no better than chance.   

As a control, we also evaluated the ability of subjects to discern 
simplifications that our model predicts could be visible.  To this 
end, we randomly interspersed trials in which the �imperceptible� 
simplification was calculated for an incorrect field of view.  Since 
the field of view varies with the distance δ of the user to the 
monitor, this amounts to calculating simplifications for incorrect 
viewing distances.  For example, a simplification that assumes the 
user is ten times further from the screen than in reality will 
probably be visibily different than a simplification computed for 
the correct distance.  The viewing distance δ in these trials was 
chosen so that simplifications should range from imperceptible 
(δ = correct distance to screen) to clearly perceptible. 

The study consisted of 4 subjects, each of whom performed 200 
trials.  During each trial, the subjects fixated on a target (a short 
line segment) in the center of the screen.  They were then shown 
the same 3-D object twice in succession, identical in all parameters 
except resolution.  25% of the trials displayed the object twice at 
full resolution, while another 25% displayed once at full resolution 
and once using our imperceptible simplification.  For the 
remaining trials, one was presented at full resolution and the other 
was presented at a reduced resolution computed using 
�imperceptible� simplification for a random viewing distance. 

Objects were displayed for 1 second and separated by 500 
milliseconds, with a neutral grey background before, after, and 
between scenes. When the second object finished displaying, the 
subject pressed a key to indicate whether they thought the models 
differed. To avoid subject fatigue, the next trial did not begin until 
500 milliseconds after the subject had pressed a key.  

After a practice session of 20 trials, each subject performed 200 
trials in a continuous session.  Subjects viewed 3 models (bunny, 
horse, rhino) from 40 random viewpoints for each viewing distance 
used by the simplification algorithm.  Viewing parameters were 

chosen so that the subject viewed the object at randomly 
distributed orientations from randomly distributed directions.  
Object size was randomly chosen such that the visual angle 
subtended by the object was uniformly distributed from 5° to 60°.  
The screen occupied approximately 46° of the subject�s field of 
view, so that in some views the object filled most of the screen.  
When adjusting viewing distance, the value was chosen from 1-
50  times the actual distance of the viewer from the screen.  We 
picked these values to span the range between clearly perceptible 
and completely imperceptible simplification. 

Each subject reported normal eyesight, some with corrective 
lenses.  Subject accuracy is plotted against distance δ.  Baseline 
represents the willingness of subjects to report a difference 
between the models when none existed.  As the graph shows, our 
system does produce imperceptible simplification: at the correct 
viewing distance (25 inches), subject accuracy, defined as ability 
to perceive simplification, is no better than baseline.   

7 Previous Work 

7.1 Perceptually Based Offline Rendering  
Many researchers have worked on perceptually based rendering 
algorithms; Bolin and Meyer [3] and Ramasubramanian et al [23] 
provide nice surveys of the field.  These algorithms take 
advantage of the limitations of human vision to avoid rendering 
computation where the result will be imperceptible.  Unlike our 
work, which seeks to accelerate interactive rendering, almost all 
previous perceptually based rendering approaches have addressed 
realistic offline rendering approaches such as ray and path 
tracing.  Since image creation times in such approaches are 
typically measured in seconds or minutes, these algorithms are 
able to use very sophisticated perceptual models. 

The state of the art in perceptually guided realistic rendering is 
well exemplified by the perceptually based physical error metric 
of Ramasubramanian et al [23].  Their perceptual model 
combines threshold sensitivity for varying illumination, contrast 
sensitivity with multi-scale spatial frequency sensitivity, and 
visual masking to predict the maximum imperceptible change in 
luminance at a given pixel in the rendered image.  This advanced 
model, which incorporates the latest advances in our 
understanding of the visual system, is costly to evaluate by 
interactive rendering terms.  Despite a novel framework that does 
not require reevaluation at every stage of the progressive 
illumination computation, the authors report that evaluating the 
model for a 512x512 image required about 12 seconds on a 400 
MHz CPU. 

7.2 Perceptually Based LOD Selection 
Comparatively few systems have attempted to guide interactive 
rendering with explicit perceptual metrics.  Funkhouser and 
Sequin�s system for dynamic LOD selection uses a cost-benefit 
estimate to pick the best levels of detail within a specified time 
budget [10].  LOD benefit is assigned heuristically, based 
primarily on an object�s screen-space size.  Their system also 
takes into account eccentricity and velocity, the speed at which 
the image of an object moves across the retina.  Lacking eye or 
head tracking, the user�s gaze is assumed to lie in the center of the 
screen; lacking accurate perceptual models, the effects of velocity 
and eccentricity are controlled with sliders set by the user.  
Though the use of these factors is ad hoc, this important work 
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introduced the notion of perceptually guided metrics to drive LOD 
selection.   

Ohshima et al described a system for gaze-directed stereoscopic 
rendering [21].  Although the paper mentions an eye-tracking 
system in progress, the results were gathered using head-tracked 
viewing direction to approximate gaze direction.  Their system 
uses eccentricity, velocity, and convergence to guide selection of 
precomputed LODs.  The equations used to model the three 
perceptual effects, and the method for combining all three effects 
to choose an LOD, appear to have been determined empirically.  
Thus their algorithm, while clearly demonstrating the potential of a 
gaze-directed approach, still employs a fundamentally heuristic 
model of the visual system. 

Reddy was the first to attempt an LOD selection system guided 
throughout by a principled perceptual model [24].  Using images 
rendered from multiple viewpoints, Reddy analyzes the frequency 
content of objects and their LODs.  A model of the visual acuity, 
defined as highest perceptible spatial frequency, guides LOD 
selection.  If a high-resolution and a low-resolution LOD differ 
only at frequencies beyond the visual acuity of the viewer, those 
differences are imperceptible and the low-resolution LOD may be 
used.  Reddy analyzes the frequency content of LODs, rendering 
each from several directions, and models the decrease in visual 
acuity with eccentricity and velocity to decide which LOD to use. 

8 Summary And Discussion 
Perceptually guided interactive rendering is a broad and difficult 
topic.  Our system shows the feasibility and potential of 
imperceptible view-dependent simplification, but many avenues 
for further research remain.  Below we summarize our contribution 
and results, and address what we see as the most pressing and 
interesting directions for future work. 

8.1 Summary  
We have demonstrated a novel approach to accelerating interactive 
rendering that is directly driven by perceptual criteria.  Our 
principle contribution is a practical framework for perceptually 
guided interactive rendering that equates local simplification 
operations to worst-case contrast gratings whose perceptibility we 
can evaluate.  We have shown an application of the framework to 
the QSplat point-rendering system, and demonstrated it in depth in 
the context of view-dependent polygonal simplification.  Our 
approach addresses several interesting problems, including 
silhouette preservation and imperceptible simplification.  An 
optional gaze-directed component uses eye tracking to obtain 
further simplification by reducing fidelity in the viewer�s 
peripheral vision. 

8.2 Improving the Current System 
We see several opportunities to improve the current system.  
Incorporating dynamic lighting into the contrast calculation is an 
obvious extension.  The difficulty lies in determining the possible 
range of intensities across the original surface without having to 
render that surface.  Since lighting calculations depend on the 
surface normal, we might use the current normal masks, which 
bound the space of normals subtended by each node�s region of 
support, to compute the minimum and maximum intensities of that 
region under the given lighting conditions.  Accounting for non-

directional light sources complicates the problem, but a solution 
certainly appears feasible. 

Our estimate of the spatial frequency induced by a fold is overly 
conservative. We currently treat the worst case by assuming the 
entire screenspace extent of the node changes; the resulting 
spatial frequency bounds the minimum frequency change 
induced.  In practice, however, the actual frequencies affected by 
a fold are typically higher (and hence less perceptible) than this 
worst-case estimate.  A tighter estimate of spatial frequency 
would, we suspect, greatly improve the amount of simplification 
possible at a given contrast.  For example, we currently use 
spheres to bound each node's region of support, which can 
overestimate the change caused by folding.  A more direct 
measure of surface distortion, such as those used by Hoppe [12] 
or Cohen [7], might allow considerably more aggressive 
imperceptible simplification. 

8.3 Extending the Perceptual Model 
Like other perceptually based rendering algorithms to date (e.g., 
that of Ramasubramanian [23]), we base our decisions on the 
viewer�s ability to perceive static stimuli.  In animated or 
interactive rendering, we should also account for temporal 
contrast sensitivity: the ability to see a sudden change or flicker 
when a more gradual change would be invisible.  In practice, our 
algorithms do not introduce visible flicker, but we could 
gaurantee this with a more sophisticated perceptual model that 
accounted for temporal contrast sensitivity.  Such a model could 
prevent folds that would cause a visible �pop�, or regulate a 
transition-softening technique such as alpha blending or Hoppe�s 
geomorphs [12].  Unfortunately, temporal contrast sensitivity is 
less well studied than the static case, and incorporating current 
psychophysical models into our framework seems difficult.  More 
research is needed in this area. 

One significant factor affecting perceptibility of features is 
contrast masking, in which the presence of a high-contrast pattern 
can decrease sensitivity to features at other frequencies.  For 
example, subtle discolorations on a brick wall may be less 
noticeable than on a uniformly colored brick-red wall.  In 
polygonal models high-frequency patterns such as bricks are 
often represented using texture maps, whose frequency 
components could be computed in advance. In future work we 
hope to exploit contrast masking by patterns in texture maps for 
more aggressive simplification. 

The velocity of a feature across the visual field also affects 
perception of detail.  Consider, for example, a foreground object 
moving rapidly across a static background.  If the user�s eye 
tracks the moving object, the background will have high velocity 
and be simplified more aggressively.  However, if the user�s gaze 
remains fixed on the background, the moving object has high 
velocity and may be simplified.  The perceptibility of moving 
contrast gratings may be related to that of static contrast gratings 
by a scaling function [15], so it should be straightforward to 
incorporate node velocity with respect to gaze into our folding 
criteria.  Experiments by Reddy indicate the potential of using 
eccentricity and velocity together to guide LOD management 
[24], and integrating retinal velocity into our perceptual metrics 
seems an obvious and very promising avenue for future work. 
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8.4 Applicability of Gaze-Directed Rendering 
Gaze-directed rendering is a powerful concept with some clear 
limitations.  Accurately monitoring the user�s gaze requires 
tracking the eye, but eye tracking is still emerging as a commodity 
technology: some current systems are fast enough, accurate 
enough, robust enough, and posses low enough latency for our 
application, but no existing eye tracker meets all of these needs at 
once.  For example, our current system is quite fast and accurate, 
but restricts the user�s head to a small volume, requires a room 
without sunlight, and involves a short calibration step before use.  

It seems likely that eye-tracking technology will improve, 
eliminating these limitations.  However, even without eye tracking 
gaze-directed rendering may still be a viable option.  When 
allowed free range of head motion, user gaze is almost always 
restricted to ±15º of head direction [1].  We can thus substitute 
head direction for eccentricity in our system simply by subtracting 
a 15º error term.  For multi-screen wide-angle displays, such as 
video wall or CAVE� systems, head-tracked gaze-directed 
rendering may be a very attractive option.   

Our system could easily handle multiple viewers by calculating the 
eccentricity of a node as the minimum distance to any viewer�s 
gaze direction.  Obviously, multiple viewers can reduce the impact 
of gaze-directed rendering, since viewers might examine different 
parts of the display at once.  Such a scenario increases the demand 
on the eye-tracking system and limits the degree of simplification 
possible.  In a multi-screen wide-angle display scenario, however, 
most of the scene will still be outside any viewer�s fovea and 
therefore still eligible for aggressive simplification.  Even with 
head tracking, which forces a more conservative estimate of 
eccentricity, we suspect that gaze-directed rendering will prove a 
powerful technique for managing rendering complexity in such 
situations. 
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ABSTRACT

View-dependent simplification (VDS)is a novel polygonal simplification algorithm

uniquely suited to the interactive visualization of very large-scale CAD datasets. VDS

adjusts the simplification continually according to view-dependent parameters such as the

viewpoint position and orientation. As a result, objects can span several levels of detail,

degrading smoothly from high fidelity where necessary to low fidelity where possible. VDS

is also global, able to process the entire database without first decomposing the environment

into individual objects. The resulting system enables interactive display of very complex

polygonal CAD models consisting of thousands of parts and millions of polygons. VDS

supports various preprocessing algorithms and various view-dependent criteria, providing a

general framework for dynamic view-dependent simplification.
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1 INTRODUCTION

Interactive visualization of very large-scale CAD models is an increasingly crucial

problem. More and more enterprises and industries are embracing full-system CAD

processes, producing and employing CAD models of unprecedented detail and completeness.

These models span the spectrum of products from submarines to power plants, from airplanes

to offshore oilrigs. Such large-scale CAD databases can serve as a single unified resource for

simulation and design, cutting costs, streamlining the design process, and speeding up

production. Interactive computer graphics is an integral component of the full-system CAD

process, enabling the design, visualization, and manipulation of these datasets. Despite

tremendous strides in computer graphics hardware, however, the growth in complexity of

large-scale models continues to outstrip our capability to render them interactively. When

converted to polygonal form for interactive rendering, today’s large-scale models easily

reach 100 million polygons, two to three orders of magnitude beyond what a high-end

commercial graphics platform can render interactively. Tomorrow’s models will

undoubtedly measure billions of polygons. To achieve interactive rendering rates on such

large-scale datasets clearly requires some algorithmic means of managing geometric

complexity.

Polygonal simplificationprovides a powerful tool for managing this complexity. These

techniques simplify the polygonal geometry of small, distant, or otherwise unimportant

portions of the model, reducing the rendering cost without a significant loss of visual detail.

This article presents a novel polygonal simplification approach uniquely suited to interactive

rendering of very large-scale CAD databases.

1.1 Traditional Polygonal Simplification

Polygonal simplification is at once a very current and a very old topic in computer

graphics. As early as 1976 James Clark described the benefits of representing objects within

a scene at several resolutions, and flight simulators have long used hand-crafted multi-

resolution models of airplanes to guarantee a constant frame rate [1,3]. Recent years have

seen a flurry of research into generating such multi-resolution representations of objects

automatically by simplifying the polygonal geometry of the object. Figure 1 illustrates



traditional polygonal simplification. Multiple versions of each object are created at

progressively coarserlevels of detailor LODs in a preprocess. At run time the system picks

which LOD will represent the object based on criteria such as distance from the viewer.

10,108
triangles

1,383
triangles

474
triangles

46
triangles

Figure 1: The traditional approach to polygonal simplification creates multiple levels of detail (LODs) of
each object in a preprocess, and picks an LOD at run time based on distance.

1.2 Motivation for a Different Approach

This article describes an algorithm conceived for very large-scale CAD databases, a class

of models for which earlier simplification methods often prove inadequate. Several features

of such models make simplification a difficult task. To begin with, large-scale CAD models

are by their nature handcrafted, often by many designers with different styles and levels of

expertise. As a result, the models tend to be messy, often containing topological

degeneracies of every sort. The sheer complexity of these models can also be daunting.

Massive models consisting of thousands of parts and millions of polygons are not

uncommon. Such massive CAD models often represent entire scenes rather than objects, and

typically exhibit a high dynamic range, containing structural elements as large as the model

as well as small, complex parts and assemblies.

An ideal polygonal simplification algorithm for large-scale CAD models should possess a

few key attributes. Such an algorithm should be:

Fast. Many traditional algorithms are quite slow, taking minutes or even hours to create

LODs for a complex object. For models containing thousands of parts and millions of

polygons, creating LODs becomes a batch process that can take hours or days to complete.



Depending on the application, such long preprocessing times may be a slight inconvenience

or a fundamental handicap. In a design-review setting, for instance, CAD users may want to

visualize their revisions in the context of the entire model several times a day. Preprocessing

times of hours prevent the rapid turnaround desirable in this scenario.

Capable of topology reduction. Most traditional LOD algorithms both require and

preserve manifold topology in the polygonal mesh. Requiring clean mesh topology hinders

the usefulness of such algorithms on handcrafted CAD models, which as noted above often

contain topological degeneracies. In addition, preserving mesh topology implies preserving

the overall genus, which as Figure 2 shows, can limit the amount of simplification possible.

Capable of drastic simplification. Visualizing truly large-scale CAD datasets requires

reducing the polygonal complexity of those datasets by three to four orders of magnitude.

Traditional methods work on a per-object basis, creating separate levels of detail for each

object in the model. As the next sections argue, this limits the amount of drastic

simplification possible.

(a) 4,736 triangles, 21 holes (b) 1,006 triangles, 21 holes (c) 46 triangles, 1 hole

Figure 2: Preserving genus limits drastic simplification. The original model of a brake rotor (a) is shown
simplified with a topology-preserving algorithm (b) and a topology-modifying algorithm (c).

Rotor model courtesy Alpha_1 Project, University of Utah.

1.3 Drastic Simplification: the Problem With Large Objects

Creating multiple LODs per object is useless for very large objects. Such an object—for

example, the terrain landform in an civil engineering project, or the hull of a ship in maritime

CAD—presents a fundamental problem: parts of the object will always be near the viewer,

while other parts will always be distant. If the object contains many polygons, using a highly

detailed LOD would mean high fidelity but low frame rates and jerky motion; using a low



detail would provide smooth motion but terrible fidelity. The usual solution is to break up

large objects by hand into smaller objects that can be simplified separately. This can entail a

great deal of work, however, and gives rise to the problem ofcracksbetween adjacent

objects simplified to different levels of detail.

The solution presented here involvesview-dependent simplification, in which the level of

detail varies across the object according to interactive viewing parameters such as viewer

position and orientation. The terrain landform and ship hull present no problem to a view-

dependent simplification algorithm because only the portions of the object near the viewpoint

need to be rendered in high detail. The bulk of the object can still be simplified drastically,

rescuing frame rates while preserving visual fidelity.

1.4 Drastic Simplification: the Problem With Small Objects

Complex assemblies of many small objects present another problem for traditional per-

object LOD. The diesel engine model shown in Figure 3, contains over two hundred small

parts (and at that is not particularly detailed). Assume an excellent LOD algorithm, which

can reduce with good fidelity each of these parts to a single cube: the entire assembly still

requires over 2,400 triangles to render. From a distance, the whole engine may cover only a

few pixels on the viewer’s screen. In this situation a single, fifty-polygon, roughly engine-

shaped block makes a better approximation than two hundred small cubes.

Our solution is to use aglobal simplificationalgorithm that treats the entire scene rather

than individual objects within the scene. With knowledge about the entire scene, the

algorithm can decide when to start combining the various parts of the diesel engine. At a low

enough level of detail, the whole engine (and perhaps nearby portions of the walls and floor)

can be merged and represented by that fifty-polygon block. Note that the idea of global

simplification dovetails nicely with a view-dependent approach. Since view-dependence

allows different portions of an object to be represented at different levels of detail,the entire

scene can be treated as a single all-inclusive object for view-dependent simplification.

These points are important and bear repeating: for drastic simplification using per-object

LOD algorithms, large objects must be subdivided and small objects must be combined.

Doing this manually can mean a great deal of work. A global, view-dependent algorithm is



better suited to drastic simplification, and thus better suited for very large-scale CAD models,

than the traditional approach of creating separate LODs for each object.

Figure 3: A diesel engine model with over 200 parts.
Courtesy Electric Boat Division, General Dynamics Corp.

1.5 The VDS algorithm

These considerations led to the algorithm presented in this article, called simplyview-

dependent simplificationor VDS. VDS provides a framework for polygonal simplification

via vertex merging. This operation, in which several polygon vertices are collapsed together

into a single vertex, provides the fundamental mechanism for removing polygonal detail.

Merging vertices that share an edge of a triangle makes that triangle redundant, allowing it to

be removed. Note the use oftriangle rather thanpolygon. The constant size and guaranteed

planarity of triangles make them preferable to generic polygons, and like most simplification

algorithms, VDS assumes that polygonal models have been fully triangulated.

VDS was designed explicitly to address the particular demands of large-scale CAD

visualization. The algorithm permits global simplification, with a single large data structure

comprising (if the user so desires) the entire model. This structure is thevertex tree, a

hierarchy of vertex merge operations that encodes a continuum of possible levels of detail

across the whole model. Applying a node’s vertex merge operation collapses all of the

vertices within the node together to a single vertex, eliminating triangles whose corners have

been collapsed together. This is calledfolding the node. Likewise, a node may beunfolded

by splitting that single vertex into the vertices of the node’s children. Triangles filtered out

when the node was folded become visible again when the node is unfolded, increasing the



triangle count. Figure 4 illustrates a simple two-dimensional example mesh and vertex tree,

along with a sequence of folding operations.

Figure 4: A sequence of fold operations. Folding each node removes some triangles from the scene,
reducing the scene to a single triangle and finally to the root nodeR.



Note that the vertex tree contains information only about the vertices and triangles of the

model. The algorithm makes no assumptions about the connectivity of those primitives. In

particular, the triangles are not assumed to form a manifold mesh or approximate a smooth

surface. This is another important feature of the VDS framework: because the simplification

operates on the level of triangles and vertices rather than meshes and surfaces, manifold

topology is not required and need not be preserved.

The entire system is dynamic and view-dependent. Nodes to be folded or unfolded are

continually chosen at run-time based according to user-specified criteria. For example, a

common criterion is to set a threshold on projected node screen size. In this mode, the user

sets a screenspace-size threshold—say two pixels—before flying the viewpoint interactively

around the model. The screenspace extent of each node is monitored: as the viewpoint shifts,

certain nodes in the vertex tree will shrink in apparent size, falling below the two-pixel

threshold. These nodes will be folded and redundant triangles removed from the scene.

Other nodes will increase in apparent size and will be unfolded into their constituent child

nodes, introducing new vertices and new triangles into the display list. Adjusting the

threshold lets the user interactively control the degree of simplification and select the right

balance of fidelity and performance.

Other criteria can be used to drive the system; VDS is less a particular algorithm than a

general framework from which algorithms can be constructed. The only essential invariants

of the VDSlib framework are the vertex tree and its associated methods (e.g., folding and

unfolding nodes). Decisions such as how the vertex tree is constructed and which view-

dependent criteria are used to fold and unfold nodes flesh out the framework into a specific

algorithm.

2 STRUCTURES AND METHODS

2.1 The Vertex Tree

The VDS vertex tree spans the entire model, organizing every vertex of every polygon

into one global hierarchy encoding all simplifications VDS can produce. Leaf nodes each

represent a single vertex of the original model; internal nodes represent the merging of

multiple vertices from the original model into a single vertex called theproxy. A proxy is



associated with each node in the vertex tree. We say a nodeN supportsa vertexV of the

original model if the leaf node representingV is a descendent ofN. Each node in the vertex

tree, then, supports a subset of the vertices in the original model; the root node supports every

vertex of the entire model. A node supports a triangleT of the original model if it supports

one or more of the vertices that formT’s corners.

Folding a node merges the vertices supported by the node into its proxy, andunfoldinga

node reverses the process. To define these terms more carefully, assume for simplicity that a

node’s children must all be folded before the node can be folded (since those children can

first be folded recursively if necessary, this assumption does not limit the power of the fold

operation). This requirement reduces the fold process from merging all vertices supported by

a node to merging the proxies of that node’s children. Similarly, unfolding a node assumes

that the node’s parent is unfolded, and splits a node’s representative vertex into just the few

representative vertices of the node’s folded children. Defined this way, fold and unfold are

local operations that make only incremental changes to the vertex tree.

Folding and unfolding a node always affects certain triangles. One set of triangles, called

the node’s relevant triangles orreltris, will change in shape as a corner shifts during fold and

unfold operations. Another set of triangles, called the node’ssubtris, will disappear when the

node is folded and reappear when the node is unfolded (Figure 5). Since reltris and subtris

do not depend on the state of other nodes in the vertex tree, they can be computed offline and

accessed very quickly at runtime.1 This is the key observation behind VDS.

1 In fact, calculating reltris can be postponed until run-time or avoided altogether; these

optimizations are discussed later.



(a) Nodes 1, 2, 7 merge to form A (b) The local vertex tree (c) Reltris and subtris of node A

Figure 5: Reltris and subtris of a node in the vertex tree. The highlighted
node A represents the clustering of nodes 1, 2, and 7.

Unfolded nodes are labeledactive; folded nodes are labeledinactive. During operation

the active nodes constitute a cut of the vertex tree, rooted at the root node, called theactive

tree. Folded nodes with active parents are a special case; these nodes form the boundary of

the active tree and are labeledboundary(Figure 6). Since the location of the boundary nodes

determines which vertices in the original model have been collapsed together, the path of the

boundary nodes across the vertex tree completely determines the current simplification.

Notice that by definition, only boundary nodes can be unfolded and only active nodes whose

children are all boundary nodes can be folded.



Figure 6: The vertex tree, active tree, and boundary nodes.

Each node in the vertex tree includes the basic structure described below; explanations of

the individual fields follow.

struct Node {
Int depth ; // depth of the node in vertex tree
NodeStatus label ; // status: active, boundary, or inactive
Coordinate proxy ; // node’s representative vertex
BoundingVol bound ; // bounding volume of all tris supported
Node * parent ; // parent node
Node * children[] ; // child nodes
Tri * reltris[] ; // triangles that change shape upon folding
Tri subtris[] ; // triangles that disappear completely

};

• depth : the depth of the node in the vertex tree.

• label : the node’s status:active, inactive, or boundary.

• proxy : the coordinates of the node’s representative vertex, to which all vertices

represented by the subtree rooted at this node are collapsed.

bound : a bounding volume that contains all triangles supported by this node. For

simplicity the current implementation uses spheres.

• parent : the parent of the node in the vertex tree

• children : a list of the node’s children in the vertex tree.

reltris : a list of triangles with exactly one corner supported by the node. These are the

triangles whose corners must be adjusted when the node is folded or unfolded.

subtris : a list of triangles with two or three corners supported by the node, but no more

than one corner supported by each child of the node. These triangles will be filtered out if

the node is folded, and re-introduced if the node is unfolded.

Note that for memory efficiency, fields such asdepth andlabel can in fact be combined

into a single field, and that lazy evaluation of triangle corners (described below) can be used

to eliminate thereltris field entirely.

2.2 The Active Triangle List

While the vertex tree represents every simplification of the model possible in the VDS

system, theactive triangle listrepresents the current simplification being rendered. The chief



purpose of the active triangle list is to take advantage of temporal coherence. Frames in an

interactive viewing session typically exhibit only incremental shifts in viewpoint, so the set

of visible triangles remains largely constant. In its simplest form, the active triangle list is

just a sequence of those visible triangles. Unfolding a node adds its subtris to the active

triangle list; folding the node removes them. The active triangle list is maintained in the

current implementation as a doubly-linked list of triangle structures, each with the following

basic structure:

struct Tri {
NodePath corners [3];
Node * proxies [3];
Tri * prev , * next ;

};

Thecorners field encodes the triangle at its highest resolution, referencing the three leaf

nodes representing the original corners of the triangle. Theproxies field represents the

triangle in the current simplification, pointing to theboundary ancestorof each corner node.

If a nodeN is inactive, its boundary ancestor is the boundary node on the path fromN to the

root. Theproxies of a triangle in the active triangle list therefore encode the three nodes

whose proxies currently represent thecorners of the triangle.

Rather than referencing trianglecorners directly via pointers, VDS uses theNodePath

structure, a bit vector which stores the path to a node from the root of the vertex tree. In a

binary vertex tree, for instance, each bit would represent a single branch; in an octree, each

three-bit sequence would represent an 8-way branch. Thenth element of the vector specifies

which branch to take at leveln. Referencing nodes in this fashion has advantages over

simple pointers. First, simple bitwise operations can be used to compute the first common

ancestor of two nodes, or to determine whether one node is a direct ancestor of another.

Equivalent tests without the NodePath bit vector would involve hopping through the vertex

tree traversing parent pointers. This will typically exhibit very poor memory coherence and

correspondingly poor cache behavior.

A related—and perhaps more important—consideration comes into play when the vertex

tree as a whole does not fit in memory, and must be paged in as necessary from disk. In this

case accessing a triangle’s original full-resolution corner nodes may be an extremely



expensive operation, to be avoided at all costs during runtime. Storing the path to each

corner node enables the triangleproxies field to be updated during fold and unfold

operations using purely local information, never referencing the original corner nodes.

2.3 Methods

The fundamental methods associated with the active triangle list areaddTri() ,

removeTri() , andrenderTriList() . A simple implementation uses a doubly-linked list

with sentinels:

// Dummy sentinel structures start and end active triangle list:
Tri *startTriList, *endTriList;

addTri (Tri *T)
// append to end of list
T->next = endTriList;
T->prev = endTriList->prev;

T->prev->next = T;

removeTri (Tri *T)
// sentinels ensure prev & next fields won’t be NULL
T->next->prev = T->prev;
T->prev->next = T->next;

RenderTriList ()
Tri *T = startTriList->next;
while (T != endTriList)

renderTri(T);
T = T->next;

Note that this scheme maintains the active triangle list entirely in place. All triangles in

the model are kept in an array; asaddTri() andremoveTri() are called, they thread the

doubly-linked list through the array. Though simple, this approach exhibits poor memory

coherence: after a long series ofaddTri() andremoveTri() calls, the linked list is likely to

hop around the array of triangles seemingly at random. If the entire array does not fit into

cache (or even into main memory), this can greatly degrade performance. Later we will

discuss possible optimizations to avoid this problem.

The fundamental methods of the vertex tree arefoldNode() andunfoldNode() . These

functions add or remove the subtris of the specified node from the active triangle list, update

the active boundary, and update the proxies of the node’s reltris:



foldNode (Node *N)
N->label = boundary ;
// all children should be labeled boundary; change to inactive
foreach child C of N

assert(C->label == boundary)
C->label = inactive ;

// update tri proxies
foreach triangle T in N->tris

// which corner of T does N support?
foreach corner c of {1,2,3}

if (T->proxies[c]->parent == N) break;
T->proxies[c] = N;

// remove subtris from active triangle list
foreach triangle T in N->subtris

removeTri(T);

unfoldNode (Node *N)
assert (N->label == boundary )
foreach child C of N

C->label = boundary ;
N->label = active ;
// update tri proxies
foreach triangle T in N->tris

// which corner of T is currently represented by N?
foreach corner c of {1,2,3}

if (T->proxies[c] == N) break;
// which child of N supports T? Check NodePath in T->corners[]
whichchild = T->corners[c][N->depth];
T->proxies[c] = T->proxies[c]->children[whichchild];

// add subtris to active triangle list
foreach triangle T in N->subtris

addTri(T);

3 VIEW -DEPENDENT SIMPLIFICATION CRITERIA

These structures and methods enable nodes to be folded or unfolded and triangles added

or removed fast enough to respond to run-time events. Criteria for view-dependent

simplification in this framework take the form of a function to choose which nodes are folded

and unfolded each frame. This section describes three such criteria in our current

implementation.

3.1 Screenspace Error Threshold

Our first goal was to remove small and distant triangles from the scene. To formulate

this approach more precisely, consider a node in the vertex tree. Folding this node, which

represents multiple vertices in the original model, clusters those vertices together into the

node’s proxy. The error introduced by collapsing the vertices can be thought of as the



maximum distance that a vertex can be shifted during the fold operation. This distance

equals the length of the vector between the node’s proxy and the clustered vertex farthest

from the proxy. The extent of this vector when projected onto the screen is thescreenspace

error of the node. By unfolding exactly those nodes whose screenspace error exceeds a user-

specified thresholdt, VDS enforces a quality constraint on the simplification: no vertex shall

move by more thant pixels on the screen.

Determining the exact screenspace extent of a vertex cluster can be a time-consuming

task, but a conservative estimate can be efficiently obtained by associating a bounding

volume with each node in the vertex tree. Our current implementation uses bounding

spheres, which allow an extremely fast screenspace extent test but often provide a poor fit to

the vertex cluster. The functionnodeSize() tests the bounding sphere of a node and returns

its extent on the screen as a fraction of viewport size. The recursive procedure

adjustTree() usesnodeSize() in a top-down fashion, evaluating which nodes to fold and

unfold. Nodes with extent greater than the threshold are unfolded and smaller nodes are

folded:

adjustTree (Node *N)
size = nodeSize(N);
if (size >= threshold)

if (N->label == active)
foreach child C of N

adjustTree(C);
else // N->label == boundary

unfoldNode(N);
else // size < threshold

foldSubtree(N);

The recursive functionfoldSubtree() , as the name suggests, folds the entire subtree
rooted at node N:



foldSubtree (Node *N)
if (node->label == active)

foreach child C of N
foldSubtree(C);
foldNode(C);

3.2 Silhouette Preservation

Silhouettes and contours are particularly important visual cues for object recognition.

Detecting nodes along object silhouettes and allocating more detail to those regions can

therefore disproportionately increase the perceived quality of a simplification [15]. A

conservative but efficient silhouette test can be plugged into the VDS framework by adding

two fields to theNode structure:coneNormal is a vector andconeAngle is a floating-point

scalar. These fields together specify acone of normals[14] for the node, which bounds all

the normals of all the triangles supported by the node. At run time a viewing cone is created

that originates from the viewer position and tightly encloses the bounding sphere of the node

(Figure 7). Testing the viewing cone against the cone of normals determines whether the

node is completely frontfacing, completely backfacing, or potentially on the silhouette.

coneNormal
(Nview)

coneAngle (α)
viewConeNormal (Nview)

viewConeAngle (β)

θ

(a) A node containing four triangles, shown with its bounding sphere, and the node’s cone of normals.
(b) The viewing cone originates from the viewer and tightly encloses the node’s bounding sphere.

The angle betweenNconeand Nview is denotedθθθθ.

Figure 7: Silhouette preservation. If any vector within the viewing cone is at right angles to any vector
within the cone of normals, the node may be on the silhouette.

testSilhouette (Node *node, Coord eyePt)

α = node->coneAngle;
Ncone = node->coneNormal;

β = calcViewConeAngle(eyePt, node);
Nview = calcViewConeNormal(eyePt, node);
θ = cos -1 ( Nview • Ncone );

if ( θ - α - β > π/2)
return FrontFacing;

if ( θ + α + β < π/2)
return BackFacing;

return OnSilhouette;

Silhouette preservation fits easily into the screenspace error metric approach presented

above: the silhouette test determines which nodes may be on the silhouette, and these nodes

are then tested against a tighter screenspace error threshold (Ts) than interior nodes (TI).



Following Hoppe [8], we fold nodes thattestSilhouette() evaluates as backfacing,

aggressively simplifying portions of the model oriented away from the viewer. This is called

backface simplification. TheadjustTree() operation is easily modified to incorporate these

tests; Figure 8 illustrates silhouette preservation and backface simplification.

(a) 1% error threshold, backface (b) 1% silhouette error threshold, 20%
simplification enabled (3,388 faces) interior error threshold (1,950 faces)

Figure 8: Silhouette preservation and backface simplification. The original model contains 8,192 faces.

3.3 Triangle Budget Simplification

The screenspace error threshold and silhouette test allow the user to set a bound on the

fidelity of the simplified scene, but often a bound on the complexity (and thus rendering

time) is desired instead.Triangle budget simplificationallows the user to specify how many

triangles the scene should contain. VDS then minimizes the maximum screenspace error of

all boundary nodes within this triangle budget constraint. The intuitive meaning of this

process is easily put into words: “Vertices on the screen can move as far ast pixels from

their original position. Using no more thann triangles, minimizet.”

We perform triangle budget simplification using a priority queue of boundary nodes,

sorted by screenspace error. The nodeN with the greatest error is unfolded, removingN from

the top of the queue and inserting the children ofN back into the queue. This process iterates

until unfolding the top node of the queue would exceed the triangle budget, at which point

the maximum error has been minimized. Pseudocode for this procedure is straightforward,

using a standard heap to implement the priority queue:



budgetSimplify (Node *rootnode)
// Initialize priority queue Q to contain just the rootnode
Heap *Q(rootnode);

while (Q->topnode->nsubtris < tribudget)
unfoldNode(Q->topnode);
// insert children, sorted by screenspace error:
foreach child C of Q->topnode

Q->insert(C);
tribudget = tribudget - Q->topnode->nsubtris;
Q->removeTopnode();

3.4 Related Work

View-dependent simplification criteria have been proposed by several researchers. Xia

and Varshney [15], for instance, describe a novel criterion that uses local illumination

information to preserve detail around regions such as specular highlights and shadow

boundaries. The screen-space error threshold described above was initially presented in [10].

It is similar in principle to the uniform component of Hoppe’sdeviation space[8]. Deviation

space is an ingenious error metric, evaluated at each node, that by its shape also incorporates

a form of silhouette preservation. Deviation space thus provides an elegant solution to two

view-dependent simplification criteria at once. The advantages of the simpler schemes

presented here over Hoppe’s deviation space are their speed and robustness, enabling fast

preprocessing times and simplification of non-manifold meshes. For the specific domain of

large-scale CAD datasets, with messy models and rapid turnaround times, these can be

significant advantages indeed.

4 OPTIMIZING THE ALGORITHM

Our initial implementation ran at interactive rates on small models, on the order of 20,000

triangles. The current system has been demonstrated on models more than two orders of

magnitude larger. Four sorts of optimization made this possible: exploiting temporal

coherence, using visibility information, streamlining the math, and parallelizing the

algorithm.



4.1 Exploiting Temporal Coherence

Interactive viewing sessions exhibit a high degree of frame-to-frame coherence, and VDS

exploits this coherence throughout. The active triangle list, for example, is based on the

assumption that relatively few triangles will be added or removed each frame. As Figure 9

shows, less than 2% of the triangles were added, deleted, or adjusted each frame during a

typical path through the Torp model at a 5-pixel screenspace error threshold. The active

triangle list exploits this temporal coherence by storing the unchanged triangles from frame

to frame, and by supporting efficient add, delete, and update operations for the rest.
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Figure 9: Triangles added, deleted, and adjusted during a 700-frame path through the 699,000-triangle
Torp model, using a screenspace error thresholds of 5 pixels.

Vertex tree traversal can also profit from temporal coherence. Just as few triangles

change status from frame to frame, few nodes in the vertex tree change status from frame to

frame. Under these conditions theadjustTree() function is inefficient, visiting many nodes

unnecessarily. A better scheme is to traverse, not down the vertex tree asadjustTree()

does, but across the vertex tree along the path formed by boundary nodes. This path, called

theboundary path, is maintained as a doubly-linked list by addingprev andnext fields to

theNode structure. In this way nodes far from the boundary are never considered and need

not even be resident in memory. The functionadjustPath() traverses the boundary path,

folding and unfolding nodes as necessary:



adjustPath (Node *root)
Node *currentNode; // node currently being tested
Node *parentNode, *lastParent; // parent of current & last node

currentNode = root->next;
parentNode = lastParent = NULL;
repeat

parentNode = currentNode->parent;
if (parentNode != lastParent)

lastParent = parentNode;
// check parent’s size first
if (nodeSize(parentNode) < threshold)

// parent falls below threshold; fold
foldSubtree(parentNode);
currentNode = parentNode;
continue;

// parent is fine, check current node
if (nodeSize(current) >= threshold)

// current node too large; unfold
unfoldNode(current);

current = current->next;
until (current == root)

Note thatcurrentNode is initialized to the root node. The boundary path actually forms

a circular linked list, going through the root. This simplifies the maintenance of the

boundary path in thefoldNode() andunfoldNode() functions:

foldNode (Node *N)
Node *pred, *succ; // predecessor and successor nodes

N->label = boundary ;
pred = N->children[0]->prev; // set pred to N’s first child’s prev
// all children should be labeled boundary; change to inactive
foreach child C of N

C->label = inactive ;
succ = C->next;

// update tri proxies as before
// remove subtris from active triangle list as before
// adjust active boundary
N->prev = pred;
N->next = succ;
N->prev->next = N;
N->next->prev = N;



unfoldNode (Node *N)
Node *pred = N->prev;
Node *succ = N->next;

foreach child C of N
C->label = boundary ;
C->prev = pred;
pred->next = C;
pred= C;

prev->next = succ;
next->prev = pred;
N->label = active ;
// update tri proxies as before
// add subtris to active triangle list as before

4.2 Using Visibility Information

For many applications, most of the model is invisible most of the time. VDS can use this

visibility information to reduce simplification as well as rendering time. For example, the

process of quickly identifying and rejecting objects outside the visible field of view is called

view-frustum culling. In applications such as architectural walkthroughs, view-frustum

culling can greatly decrease rendering time by not rendering invisible portions of the model.

Efficient view-frustum culling in VDS requires modifying the active triangle list.

Triangles are added to and removed from the list in a haphazard fashion as nodes are folded

and unfolded, so triangles near each other in the model are unlikely to be near each other in

the active triangle list. The solution is to imposespatial coherenceby splitting the active

triangle list into a hierarchy of lists, each representing a region of the complete model. Each

triangle created byunfoldNode() is added to the appropriate list. View-frustum culling is

applied to the lists themselves; the rendering process tests a bounding volume associated with

each list, and skips any lists determined to be invisible.

The vertex tree provides a ready-made hierarchy in which to organize these multiple

active triangle lists. Each triangle can be associated with acull nodethat supports all three

corners of the triangle. The cull node is invisible if its bounding volume lies outside the view

frustum. Since that volume includes all three corners of the triangle, the triangle need not be

rendered if its cull node is invisible. This property holds hierarchically: the descendants of

an invisible node are themselves invisible. View-frustum culling, then, can be easily

incorporated into VDS by creating an active triangle list for each node in the first few levels



of the vertex tree. WhenunfoldNode() creates a triangle, that triangle is added to the list of

the appropriate node, which can be quickly calculated via bitwise operations on the triangle’s

corners.

Not rendering triangles contained by invisible nodes speeds rendering, but an invisible

node may still support visible triangles (Figure 10). This fact gives rise to a stronger

condition: some nodes are not only invisible butirrelevant, meaning that they support no

visible triangles. An irrelevant node therefore cannot affect the visible scene, and the

simplification traversal can choose to fold the node or simply ignore it. The large majority of

invisible nodes are typically irrelevant, so testing for irrelevance provides a significant

speedup. A simple test is to extend the node’s bounding sphere to include all triangles

supported by the node, storing an additional radius.

Figure 10: Visible, invisible, and irrelevant nodes. Invisible nodes lie outside the view frustum.
Irrelevant nodes are invisible and support no vertices of visible triangles.

4.3 Streamlining the Math

Appropriate use of approximations and careful implementation can greatly streamline the

computation involved in evaluating view-dependent criteria. For example, thenodeSize()

function for evaluating screenspace error finds the extent of a cluster of vertices when

projected onto the screen. An exact solution would presumably involve projecting the

vertices (or their convex hull) and comparing the resulting screen coordinates, a dauntingly

expensive operation. SincenodeSize() is typically called thousands of times per frame, an

approximate solution based on bounding spheres is used instead. For a sphere with centerc



and radiusr, seen from the eyepointe with field-of-view angleϕ, the fraction of viewportF

occupied by the sphere is estimated by:

( )2tanϕec −
= r

F (1)

Note that this approximation assumes that the sphere lies in the center of the field of

view, and slightly underestimatesF for nodes near the edges of the viewport. This fairly

terse expression can be optimized still further in context. The functionadjustTree() , for

instance, compares each node’s screenspace extentF to a user-specified thresholdt. This

amounts to evaluating the inequality:

tF ≥ (2)

which reduces to:

( )2tanϕec −≥ tr (3)

Squaring both sides and dividing by tan2(ϕ /2) yields:

( ) 2222 2cot ec −≥ tr ϕ (4)

The cot2(ϕ /2) term is precalculated at the beginning of each frame. This expression is

well suited for rapid evaluation, with no division or square root operations. Fixing the field-

of-view angle throughout the viewing session enables further optimization by computing and

storing the entirer2cot2(ϕ /2) term for each node, instead of just the radiusr of the node’s

bounding sphere. Though these rearrangements may seem minor, this optimization alone

more than tripled the speed of the simplification process in practice.

Here is the modifiedadjustTree() function, with silhouette tests omitted for clarity.

The threshold2 term, as the name suggests, holds the user-specified threshold, squared, and

the newr2cot2 field of theNode structure storesr2cot2(ϕ /2) for the node. Modifying the

adjustPath() function along the same lines is straightforward.



adjustTree (Node *N)
distance2 = (N->center[X] – eyept[X]) 2 +

(N->center[Y] – eyept[Y]) 2 +
(N->center[Z] – eyept[Z]) 2

if (N->r2cot2 >= threshold2 * distance2)
if (N->label == active )

foreach child C of N
adjustTree(C);

else // N->label == boundary
unfoldNode(N);

else // node size is below threshold
foldSubtree(N);

4.4 Parallelization: Asynchronous Simplification

Computer graphics applications commonly parallelize by performing the major rendering

stages concurrently in pipeline fashion. A traditional level-of-detail system might be divided

into SELECT and RENDER stages: the SELECT stage decides which LOD of which objects

to render in framen and compiles them into a display list, while the RENDER process

renders framen-1 [4]. If S is the time taken to select LODs andR is the time taken to render

a frame, performing the two processes as a pipeline reduces the total time per frame from

R+Sto max(R,S).

VDS divides naturally into two basic tasks, SIMPLIFY and RENDER. The SIMPLIFY

task traverses the vertex tree, folding and unfolding nodes as needed. The RENDER task

loops over the active triangle list rendering each triangle. Let the time taken by SIMPLIFY

to traverse the entire tree beSand the time taken by RENDER to draw the entire active list

beR. The frame time of a uniprocessor implementation will then beR+S, and the frame time

of a pipelined implementation will again bemax(R,S). The rendering task usually dominates

the simplification task, so the effective frame time often reduces toR. The exception is

during large shifts of viewpoint, when the usual assumption of temporal coherence fails and

many triangles must be added and deleted from the active triangle list. This can have the

distracting effect of slowing down the frame rate exactly when the user speeds up the rate of

motion.

Asynchronous simplificationprovides a solution: let the SIMPLIFY and RENDER tasks

run asynchronously, with the SIMPLIFY process writing to the active triangle list and the

RENDER process reading it. This decouples the tasks for a total frame time ofR,



eliminating the slowdown artifact associated with large viewpoint changes. When the

viewer’s velocity outpaces the simplification rate in asynchronous mode, the SIMPLIFY

process simply falls behind. Typically, this results in a temporary coarsening of the scene

quality. Under VDS, the portions of the scene near the viewer are refined to high detail

whereas distant portions are simplified to coarse detail. If the user moves forward too

quickly for the SIMPLIFY process to keep up, the viewpoint will leave the highly detailed

region behind and move into a coarsely represented region. The scene rendered for the

viewer remains coarse in quality until the SIMPLIFY process catches up, at which point the

scene gradually refines back to the expected quality. This graceful degradation of fidelity is

much less distracting than sudden drops in frame rate.

4.5 Lazy Evaluation of Triangle Corners

A final optimization worth mentioning reduces the space, rather than the time, required

by VDS. Recall thereltris field of the VDSNode structure, which stores a list of triangles

that must be adjusted when the node is folded or unfolded. We have discovered that this list

can be eliminated by moving the update of triangle corners to the RENDER task, just before

the triangle is rendered. Since this is the last possible moment for update, and since only

triangles that must in fact be rendered are updated, we refer to this aslazy evaluation of

triangle corners. In our experiments, evaluating triangle corners in lazy fashion slowed the

rendering process by around 5%, while decreasing the memory requirements of the vertex

tree by around 15%. The worth of this tradeoff depends on the bottlenecks of the application.

5 CONSTRUCTING THE VERTEX TREE

Thus far we have described the VDS vertex tree and its role in dynamic simplification,

but have left open the question of how to construct the vertex tree in the first place. The

vertex tree is completely determined by the order in which vertices are grouped. Once the

hierarchical grouping of vertices is established, the matter of calculating subtris, bounding

volumes, and so on becomes a purely mechanical process. How then do we perform this

hierarchical vertex clustering?

The possible algorithms form a spectrum, ranging from fast, simple approaches whose

resulting simplifications have moderate fidelity to slower, more sophisticated methods with



superb fidelity. The choice of algorithm for constructing the vertex tree is heavily

application-dependent. In a design-review setting, CAD users may want to visualize their

revisions in the context of the entire model several times a day. Preprocessing times of hours

are unacceptable in this scenario. On the other hand, a walkthrough of the completed model

might be desired for marketing purposes. Here it makes sense to use a slower, more careful

algorithm to optimize the quality of simplifications and prevent any distracting artifacts.

Since our goal is interactive visualization of very large, potentially messy CAD datasets with

rapid turnaround, the clustering scheme we present here emphasizes speed and robustness

above all.

5.1 Tight-Octree Vertex Clustering

Theoctreeprovides a simple top-down approach to vertex clustering. An octree is an 8-

way tree in which each node represents an axis-aligned cube; the root node cube is created

large enough to contain every vertex in the model. The root node is divided in half along the

X, Y, and Z axes into 8 cubical subnodes, the vertices are partitioned among these eight

children, and the process is recursively repeated for any subnode with more than one vertex.

In this way, vertices are clustered roughly according to proximity. Neighboring vertices are

likely to get clustered near the leaves of the tree, whereas distant vertices merge only at

higher levels of the tree.

CAD models are often locally dense but globally sparse, consisting of highly detailed

components separated by large areas of low detail or empty space. In this situation, a more

adaptive partitioning structure is desired. Thetight octreeis a modified octree in which each

node is tightened to the smallest axis-aligned cube that encloses the relevant vertices before

the node is subdivided. This tightening ensures that every subdivision partitions the vertices,

leading to more balanced trees with fewer nodes to traverse and store, and works very well in

practice on all the CAD datasets we have tested.

Tight-octree clustering possesses many advantages. Its simplicity makes an efficient,

robust implementation relatively easy to code. In addition, the spatial partitioning of vertices

is very fast, bringing the preprocess time of even large models down to manageable levels.

Preprocessing the 700,000-polygon torpedo room model, for example, takes only 108

seconds using a tight-octree clustering scheme. Finally, spatial-subdivision vertex clustering



is inherently very general. No knowledge of the polygon mesh is used; manifold topology is

neither assumed nor preserved. In the CAD domain, meshes with degeneracies such as

cracks, T-junctions, and missing polygons are regrettably common, but tight-octree vertex

clustering can operate despite the presence of degeneracies incompatible with many schemes.

5.2 Related Work

Hoppe’s work on view-dependent refinement of progressive meshes [8, 9] resembles the

VDS algorithm presented here in many ways. Aprogressive meshis a hierarchy of edge

collapse operations similar in principle to a binary VDS vertex tree. The view-dependent

criteria introduced by Hoppe to simplify the progressive mesh at run time have already been

discussed. For construction of the progressive mesh, Hoppe uses a careful optimization

approach that sorts possible edge collapse operations into a priority queue based on the error

they add to the mesh [7]. This error is estimated by measuring the deviation of the simplified

mesh from the original mesh at multiple points scattered across the local neighborhood.

The most fundamental difference between VDS and view-dependent refinement of

progressive meshes is their underlying mechanism of merging vertices. VDS clusters

arbitrarily many vertices at once to a single representative vertex, whereas progressive

meshes use edge collapse operations that merge exactly two vertices sharing an edge in the

mesh. As a result, the vertex hierarchy in a progressive mesh will always be binary, whereas

the VDS vertex tree may in principle ben-ary2. Similarly, applying an edge collapse

removes exactly two triangles from the mesh, whereas folding a VDS node may remove

many triangles from the scene. Which scheme is better in general is unclear. The binary tree

of a progressive mesh will be deeper than the corresponding VDS vertex tree, with many

more nodes to traverse and store. On the other hand, the simple and regular structure of the

edge collapse operation, which can be represented by a small, constant-size structure, lends

itself to efficient storage and traversal. The finer granularity of the edge collapse could be an

advantage, since a triangle budget can be specified very precisely, or a disadvantage, since

more nodes must be processed to reach a desired level of simplification.

2 In practice, of course, using a tight octree guarantees a vertex tree of maximum degree

8.



In the context of large CAD datasets, for which VDS was designed, the edge collapse

operation has some definite disadvantages. Since edge collapses that create non-manifold

regions are disallowed, holes in the mesh are not simplified and the genus of the object

remains fixed. As argued above, this can limit the potential for drastic simplification of high-

genus objects. Moreover, since only vertices that share an edge are merged, each object must

be simplified separately, limiting the potential for drastic simplification of complex

assemblies of objects. Furthermore, particularly CAD models may contain inherently non-

manifold features, such as three triangles meeting at a single shared edge; algorithms based

on edge collapses simply cannot represent such models. By clustering based on proximity,

without regard to topology or source object, VDS deals well with all of these problem cases.

Once the tight octree has produced a vertex clustering, we usequadric error metrics

(QEMs) to optimize the placement of the representative vertex. QEMs, introduced by

Garland and Heckbert [6], provide a simple and fast technique for measuring the sum of the

squared distances from a node’s proxy to the planes of all of the triangles that node supports.

Quadric error metrics require relatively little storage, handle non-manifold surfaces robustly,

and produce simplifications of excellent fidelity. We use refinements to the basic QEM

algorithm, in particular the surface-area preservation technique used by Erikson and

Manocha in the GAPS algorithm [4].

6 RESULTS

All results reported here were obtained on a four-processor SGI Onyx2 computer with

195 MHz R10K processors, 1152 megabytes of main memory, 4 megabytes of secondary

cache, and InfiniteReality graphics.

6.1 Performance

Five sample models were chosen to span several CAD categories and a large range of

polygon counts. The models and results are summarized in Table 1.Engineis a detailed

model of an automobile engine containing over 140,000 triangles.Cassiniis an aerospace

CAD model of the Cassini space probe, provided courtesy of the Jet Propulsion Laboratory.

It contains over 415,000 triangles.AMRdepicts the auxiliary machine room of a notional

nuclear submarine, containing approximately 505,000 triangles.Torp is another maritime



CAD dataset, representing the torpedo room of the same submarine with approximately

699,000 triangles. The Electric Boat Division of General Dynamics Corporation provided

both submarine models. The smallest model,bunny, contains 70,000 triangles and comes

from the Stanford 3-D Scanning Repository. Though it hardly qualifies as a CAD model, the

bunny has become an unofficial benchmark for the polygonal simplification field.

Model Category Triangles Preprocessing time Vertex tree nodes Vertex tree storage (w/ gzip)

Bunny Scanned 69,451 7.2 seconds 50,856 5 Mb

Engine Mechanical CAD 140,696 25 seconds 102,577 8 Mb

Cassini Aerospace CAD 415,257 75 seconds 278,329 30 Mb

AMR Maritime CAD 504,969 86 seconds 394,253 32 Mb

Torp Maritime CAD 698,872 108 seconds 816,833 48 Mb

Table 1: Names, categories, and complexity of models in the VDS test suite.

6.2 Artifacts

Implementing asynchronous simplification is relatively straightforward, but care must be

taken to avoiddropouts. Characterized by triangles that disappear for a frame, these transient

artifacts occur when the RENDER process sweeps through a region of the active list being

affected by the SIMPLIFY process. For example, thefoldNode() operation removes

triangles and fills the resulting holes by merging the corners of surrounding triangles. If

those neighboring triangles have already been rendered during the frame whenfoldNode()

adjusts their corners, but the triangle to be removed has not yet been rendered, a hole will

appear in the mesh for that frame.

Dropouts prove difficult to eradicate using simple locking schemes without a significant

performance penalty. One solution that works well is theupdate queue. Rather than

performing thefoldNode() andunfoldNode() operations, the SIMPLIFY process

accumulates these updates into the update queue, marking the node Dirty and placing a Fold

or Unfold entry in the queue. At the beginning of every frame, the RENDER process

performs the updates in the queue, folding or unfolding each node before marking it Clean

again. All changes to the active triangle list take place as a batch before any triangles are

rendered; the shared database is thus kept consistent and dropouts are eliminated.



Another visual artifact that VDS can introduce ismesh folding. Mesh folding occurs

when shifting the position of a vertex causes an attached triangle to flip in orientation (Figure

11). These artifacts are inherent to any vertex-merging or edge-collapse scheme that does

not take care to avoid them. The visual effect of mesh folding depends on the rendering

parameters. Folding a triangle flips its orientation, so such triangles may not be drawn if

backface culling is enabled. If two-sided lighting is enabled, the triangle will be drawn, but

since flipping a triangle negates its normal vector, the folded triangle may be shaded

differently from the surrounding mesh.

Figure 11: An example of mesh folding. When vertices 1 and 7 are merged to form vertex A, the shaded
triangle folds over neighboring triangles, flipping in orientation.

Careful construction of the vertex tree can reduce the likelihood of mesh folding, but to

completely eliminate folding artifacts requires additional view-dependent criteria. One

possibility is to check the normal of each affected triangle; if a triangle normal is flipped, the

fold operation is disallowed. Less expensive tests can be had by enforcing dependency

constraints on the mesh, so that certain conditions must be met before a node may be folded

or unfolded [8, 15]. Since the artifacts are small, and since additional view-dependent

criteria might overly restrict simplification, the current VDS implementation does not attempt

to prevent mesh folding. When high fidelity is a concern, however, adding code to prevent

these artifacts would certainly be worthwhile.

6.3 Visual Results

Figure 12 shows an examples of the VDS system in action, comparing an original model

to run-time simplifications created with various screenspace error tolerances.



Figure 12: Top: The Torp model at original resolution comprises 698,872 faces.
Left: At 0.8% screenspace error (129,446 faces), visual artifacts are fairly subtle.

Right: At 1.5% screenspace error (76,404 faces), distant objects are simplified to almost schematic levels,
while nearby features still possess reasonable fidelity.

7 SUMMARY AND FUTURE WORK

View-dependent simplification can provide a powerful, general framework for

visualizing complex polygonal environments. We have described VDS, a view-dependent

polygonal simplification algorithm particularly well suited to very large-scale CAD datasets.

Such datasets are notoriously difficult for simplification; they are by nature extremely large,

complex, and messy models. Key advantages of VDS include the ability to perform drastic

simplification—despite the presence of very large objects, very small and numerous objects,

or objects of high genus—and the ability to simplify arbitrary polygonal models despite non-

manifold mesh topology.



VDS is also flexible, letting the user tailor the vertex tree construction algorithm and

view-dependent simplification criteria to the application at hand. We have focused on the

tight-octree vertex-clustering algorithm for constructing the vertex tree. The tight-octree is

fast, robust, and completely automatic, making it well suited for large-scale CAD datasets

with rapid turnaround. We have presented multiple view-dependent criteria for

simplification, and discussed many optimizations to the basic VDS system.

The chief disadvantages of VDS are those of any view-dependent polygonal

simplification scheme: an increased computational load on the CPU, and a mismatch to

current graphics hardware, which is largely oriented towards retained-mode rendering.

Many interesting avenues of future work remain to be explored. One promising criterion

for view-dependent simplification would adapt the work of Cohen [2] onappearance

preserving simplification. Using successive mappings, this approach is able to bound, in

screenspace, the distortion of texture maps during simplification. A similar technique can be

applied to anormal map, which represents surface curvature just as a texture map captures

surface color. Appearance preserving simplification thus provides a screenspace bound, not

only on geometric deviation, but on deviation in coloration as well. View-dependent

appearance-preserving simplification seems a promising area for future research.

Oshima [12] and Reddy [13] describegaze-directed simplificationsystems, in which

level of detail is regulated by the direction of a user’s gaze. For example, an object in the

center of a user’s field of view would be allocated more detail than the same object in the

periphery of the user’s vision. Both Oshima and Reddy apply these criteria to selection of

static LODs. We have begun to experiment with gaze-directed view-dependent

simplification, and our initial results are encouraging.

The memory access patterns of VDS could be improved. For example, the current

system implements the active triangle list as a doubly linked list to support efficient insert

and delete operations. This list is maintained in place, threaded through an array of all

triangles in the model. As described above, however, this tends to create a haphazard path

that ruins cache coherence as it hops back and forth through the array. A better approach

would collect all the active triangles into a single coherent array where they could be

rendered with a simple linear pass.



These sort of memory-management issues touch on the larger topic ofout-of-core

simplification, in which the model to be rendered is far larger than main memory. VDS

seems well suited to out-of-core simplification, since only the boundary path and active

triangle list appear crucial to keep resident in memory. Research problems to be addressed

include the out-of-core generation of a vertex tree. Hoppe [9] describes an interesting

solution to this problem for the specific domain of terrain rendering; perhaps his approach

could be generalized to arbitrary polygonal models.

One important area of future research is the question of how to simplify dynamic

polygonal environments. Every simplification algorithm to date assumes that the models to

be simplified are static, and must be run from scratch if the model changes. In an active

CAD session, however, a designer builds a complex model with a series of incremental, often

local changes. For example, many systems are based on constructive solid geometry (CSG)

modeling, in which solids are defined by a series of Boolean operations upon simpler solids.

Supported operations include union, intersection, and subtraction. A simplification system

that supported efficient union, intersection, and subtraction operations upon VDS-style vertex

trees could maintain a simplified representation of the model through incremental updates to

the design. This should enable the designer to view a larger, more complex portion of the

model interactively, which might provide more helpful context. Simplification of dynamic

scenes is a challenging problem, and seems likely to be one of the next frontiers of polygonal

simplification.
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Polygonal models currently dominate inter-
active computer graphics. This is chiefly

because of their mathematical simplicity: polygonal
models lend themselves to simple, regular rendering
algorithms that embed well in hardware, which has in

turn led to widely available polygon
rendering accelerators for every
platform. Unfortunately, the com-
plexity of these models—measured
by the number of polygons—seems
to grow faster than the ability of our
graphics hardware to render them
interactively. Put another way, the
number of polygons we want always
seems to exceed the number of poly-
gons we can afford.

Polygonal simplification tech-
niques (see Figure 1) offer one solu-
tion for developers grappling with
complex models. These methods
simplify the polygonal geometry of
small, distant, or otherwise unim-
portant portions of the model, seek-

ing to reduce the rendering cost without a significant
loss in the scene’s visual content. This is at once a very
current and a very old idea in computer graphics. As
early as 1976, James Clark described the benefits of rep-
resenting objects within a scene at several resolutions,1

and flight simulators have long used hand-crafted mul-
tiresolution airplane models to guarantee a constant
frame rate. Recently, a flurry of research has targeted
generating such models automatically. If you’re consid-
ering using polygonal simplification to speed up your
3D application, this article should help you choose
among the bewildering array of published algorithms.

The first questions
The first step in picking the right simplification algo-

rithm is defining the problem. Ask yourself the follow-

ing questions. (Note that Table 1 gives some informal
and highly subjective recommendations for develop-
ers, organized according to the criteria I present in this
section.)

Why do I need to simplify polygonal objects?
What’s your goal? Are you trying to eliminate redun-

dant geometry? For example, the volumetric isosurfaces
generated by the marching cubes algorithm10 tile the
model’s flat regions with many small, coplanar trian-
gles. Merging these triangles into larger polygons can
often decrease the model complexity drastically with-
out introducing any geometric error. Similarly, you may
need to subdivide a model for finite-element analysis;
afterwards a simplification algorithm could remove
unnecessary geometry. 

Or are you trying to reduce model size, perhaps cre-
ating downloadable models for a Web site? Here the
primary concern becomes optimizing bandwidth,
which means minimizing storage requirements. A sim-
plification algorithm can take the original highly
detailed model—whether created by a CAD program,
laser scanner, or other source—and reduce it to a band-
width-friendly level of complexity. If reducing the size
required to store or transmit your 3D models is impor-
tant, you should also investigate algorithms for geo-
metric compression (see the “Further Reading” sidebar
on p. 26).

Or are you trying to improve runtime performance by
simplifying the polygonal scene being rendered? The
most common use of polygonal simplification is to gen-
erate levels of detail (LODs) of the objects in a scene. By
representing distant objects with a lower LOD and near-
by objects with a higher LOD, applications from video
games to CAD visualization packages can accelerate ren-
dering and increase interactivity. Similar techniques let
applications manage the rendering complexity of flying
over a large terrain database. This leads naturally to the
next important question.
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What are my models like?
No algorithm today excels at simplifying all models.

Some approaches best suit curved, organic forms, while
others work best at preserving mechanical objects with
sharp corners, flat faces, and regular curves. Many mod-
els, such as radiositized scenes or scientific visualization
data sets, have precomputed colors or lighting that must
be considered. Some scenes, such as terrain data sets
and volumetric isosurfaces from medical or scientific
visualization, comprise a few large, high-complexity,
individual objects. The monsters in a video game, on the
other hand, might consist of multiple objects of moder-
ate complexity, mostly in isolation. As a final example,
an automobile engine CAD model involves large assem-
blies of many small objects. Which simplification algo-
rithm you choose depends on which of these
descriptions applies to your models.

What matters to me most?
Ask yourself what you care about in a simplification

algorithm. Do you need to preserve and regulate geo-
metric accuracy in the simplified models? According to
what criterion? Some algorithms control the Hausdorff
distance of the simplified vertices or surface to the orig-
inal. (Informally, two point sets A and B are within Haus-
dorff distance d of each other if every point in A is within
distance d of a point in B, and vice versa.) Other algo-

rithms bound the volumetric deviation of the simplified
mesh from the original. Some algorithms preserve the
model’s topological genus; others attempt to reduce the
genus in a controlled fashion.11,12

Do you simply want high visual fidelity? This unfor-
tunately is much harder to pin down; perception is more
difficult to quantify than geometry. Nonetheless, some
algorithms empirically provide higher visual fidelity
than others do: one measures the simplification against
rendered images4 and another bounds, in pixels, the
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1 Managing model complexity by
varying the level of detail used for
rendering small or distant objects.
Polygonal simplification methods
can create multiple levels of detail
such as these.

Table 1. Assorted recommendations for “The First Questions” section.

Questions and Answers Recommendation

Why do I need to simplify polygonal objects? 
Eliminate redundant geometry Decimation2 excels at this.
Reduce model size For a one-shot application, use a high-fidelity algorithm like appearance-

preserving simplification (APS)3 or image-driven simplification (IDS).4 Also 
consider geometry compression techniques (see the “Further Reading” sidebar).

Improve runtime performance Depends, see below.
(by managing levels of detail)

What are my models like?
Complex organic forms Decimation is often used, for example, for medical datasets, but quadric error 

metrics (QEM)5 provide better fidelity at drastic rates.
Mechanical objects Progressive meshes6 for fidelity; vertex clustering for speed and simplicity.

Lots of textures or precomputed lighting APS preserves fidelity best, with guaranteed bounds on deviation.
A few high-complexity objects Use a view-dependent algorithm such as progressive meshes or hierarchical 

dynamic simplification (HDS).7

Multiple moderately complex objects Use LODs. QEM is the best overall algorithm for producing LODs.
Large assemblies of many small objects Merge objects into hierarchical assemblies using a topology-tolerant algorithm 

such as QEM or HDS.
So complex they don’t fit in memory Out-of-core simplification8 is your best bet.

What matters to me most?
Geometric accuracy Use simplification envelopes (SE)9 for manifold models, otherwise use QEM.
Visual fidelity APS provides strong fidelity guarantees but is limited on most current 

hardware. IDS is driven by rendered images and has high visual fidelity.
Preprocess time QEM provides high fidelity at high speed.
Drastic simplification QEM if view-independent simplification suffices, otherwise use HDS.
Completely automatic HDS works well for this.
Simple to code Use publicly available code if possible, otherwise code up vertex clustering.

69,451 2,502 251 76
triangles triangles triangles triangles



visual disparity between an object and its simplification.3

Is preprocess time an issue? For models containing
thousands of parts and millions of polygons, creating
LODs becomes a batch process that can take hours or
days to complete. Depending on the application, such
long preprocessing times may be a slight inconvenience
or a fundamental handicap. In a design-review setting,
for instance, CAD users may want to visualize their revi-
sions in the context of the entire model several times a
day. Hours of preprocessing prevent the rapid turn-
around desirable in this scenario. On the other hand,
when creating LODs for a video game or a product
demonstration, it makes sense to take the time neces-
sary to get the highest quality simplifications.

If runtime performance is crucial or your models are
extremely complex, you may need an algorithm capable
of drastic simplification. As the following sections

explain, drastic simplification may require drastic mea-
sures such as view-dependent simplification and topol-
ogy-reducing simplification. If you need to simplify many
different models, a completely automatic algorithm may
be most important.  Perhaps—let’s face it—you just want
something simple to code. Once you decide what mat-
ters to you most, you’re ready to pick an algorithm.

Different kinds of algorithms, and why
you’d want to use them

The computer graphics literature is replete with excel-
lent simplification algorithms. Researchers have pro-
posed dozens of approaches, each with strengths and
weaknesses. Here, I attempt a useful taxonomy for sim-
plification algorithms, listing some important ways algo-
rithms can differ or resemble each other and describing
what these mean to the developer.
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A number of excellent surveys review the field of
polygonal simplification. For example, Cignoni et al.1

supplied some comparative performance statistics, while
Heckbert and Garland2 and Puppo and Scopigno3

summarized many of the methods not mentioned here. A
tutorial by De Floriani et al.4 provides a nice overview of
LOD techniques in both surface and volume modeling.

Since polygonal simplification methods reduce the
amount of geometry required to represent a model, they
can are a form of geometry compression. Simplification
provides lossy compression: simplified LODs require less
memory to store and less bandwidth to deliver across a
network, but at the cost of lower fidelity. Since 1995,
researchers have proposed many geometry-compression
techniques—both lossy and lossless—and the state of the
art is rapidly advancing. Developers interested in reducing
their 3D models’ storage or bandwidth requirements may
wish to investigate this burgeoning field. A full survey lies
beyond the scope of this article, but a brief list of important
papers follows (for more detail, see Taubin and Rossignac’s
excellent overview5):

� Geometry compression.6 This seminal paper introduced the
generalized triangle mesh representation, which caches the
most recent n vertices for reference by triangles. The algo-
rithm also optimizes the encoding of normals using a table-
based approach and applies standard compression
techniques to colors and coordinates.

� Geometric compression through topological surgery.7 This
work focuses on compressing connectivity and coordinate
information using a vertex spanning tree. It forms the basis
for 3D geometry compression in the MPEG-4 standard.

� Progressive forest split compression.8 This algorithm combines
aspects of progressive meshes and topological surgery, pro-
viding a highly efficient encoding of models that may be
transmitted progressively across a network. Each stage of
decompression doubles the number of vertices by splitting
each vertex into two and stitching together the split regions
according to an encoded triangulation.

� Edgebreaker.9 This algorithm uses a finite-state machine to
traverse and label triangles in a manifold mesh, compress-

ing the triangle connectivity of zero-genus (that is, no holes)
objects to less than 2 bits per triangle.

� Progressive geometry compression.10 This recent and sophis-
ticated progressive coding algorithm uses semiregular mesh-
es, wavelet transforms, and zero-tree coding to achieve
extremely high compression rates with excellent visual fideli-
ty. The algorithm, designed for densely sampled meshes
produced by geometry scanning, doesn’t attempt to recre-
ate the connectivity or vertex locations of the original mesh,
focusing instead on the underlying surface’s shape.
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Topology
The treatment of mesh topology during simplification

provides an important distinction among algorithms.
First, let me introduce a few terms. In the context of polyg-
onal simplification, topology refers to the connected
polygonal mesh’s structure. The genus is the number of
holes in the mesh surface. For example, a sphere and a
cube have a genus of zero, while a doughnut and a cof-
fee cup have a genus of one. The local topology of a face,
edge, or vertex refers to the connectivity of that feature’s
immediate neighborhood. The mesh forms a 2D manifold
if the local topology is everywhere equivalent to a disc—
that is, if the neighborhood of every feature consists of a
connected ring of polygons forming a single surface (see
Figure 2). In a triangulated mesh displaying manifold
topology, exactly two triangles share every edge, and
every triangle shares an edge with exactly three neigh-
boring triangles. A 2D manifold with boundary permits
boundary edges, which belong to only one triangle.

Manifold meshes result in well-behaved models. Vir-
tually any simplification algorithm can successfully
operate on any manifold object. Manifold meshes are
also desirable for many other applications, such as finite-
element analysis and radiosity. Some algorithms and
modeling packages guarantee manifold output. For
example, the marching-cubes algorithm constructs
manifold volumetric isosurfaces. Unfortunately, in actu-
al practice many models aren’t perfectly manifold, with
topological flaws such as cracks, T-junctions, and non-
manifold points or edges (see Figure 3). Such defects
are particularly problematic in CAD, which by defini-
tion involves handmade models.

A topology-preserving simplification algorithm pre-
serves manifold connectivity at every step. Such algo-
rithms don’t close holes in the mesh and therefore
preserve the overall genus. Because no holes appear or
disappear during simplification, the simplified object’s
visual fidelity tends to be relatively good. This constraint
limits the simplification possible, however, since objects
of a high genus can’t be simplified below a certain num-
ber of polygons without closing holes in the model (see
Figure 4). Moreover, a topology-preserving approach

requires beginning with a mesh with manifold topology.
Some algorithms are topology tolerant—they ignore
regions in the mesh with nonmanifold local topology,
leaving those regions unsimplified. Other algorithms,
faced with nonmanifold regions, may simply fail.

Topology-modifying algorithms don’t necessarily pre-
serve manifold topology. The algorithms can therefore
close up holes in the model and aggregate separate
objects into assemblies as simplification progresses, per-
mitting drastic simplification beyond the scope of topol-
ogy-preserving schemes. This drastic simplification
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2 A 2D mani-
fold with a
boundary
(boundary
edges in green).
One or two
triangles share
each edge and a
connected ring
of triangles
shares each
vertex.

(a) (b) (c)

3 Examples of nonmanifold meshes: (a) An edge shared by three triangles,
(b) a vertex shared by two otherwise unconnected sets of triangles, and (c)
a T-vertex.

(a) (b) (c)

4 Preserving genus limits drastic simplification. The original model of a brake rotor with (a) 4,736 triangles and 21 holes is simplified
with a topology-preserving algorithm using (b) 1,006 triangles and 21 holes and a topology-modifying algorithm with (c) 46 triangles
and one hole. Model courtesy of the Alpha_1 Project, University of Utah.



often comes at the price of poor visual fidelity, with dis-
tracting popping artifacts caused by holes appearing
and disappearing from one LOD to the next. Some topol-
ogy-modifying algorithms don’t require valid topology
in the initial mesh, which greatly increases their utility
in real-world CAD applications. Some topology-modi-
fying algorithms attempt to regulate the change in topol-
ogy but most are topology insensitive, paying no heed to
the initial mesh connectivity.

As a rule, topology-preserving algorithms work best
when visual fidelity is crucial or with an application such
as finite-element analysis, in which surface topology can
affect results. Preserving topology also simplifies some
applications, such as multiresolution surface editing,
which require a correspondence between an object’s
high- and low-detail representations. Real-time visual-
ization of complex scenes, however, requires drastic sim-
plification and here topology-modifying algorithms
have the edge. Either way, pick a topology-tolerant algo-
rithm unless you’re certain that your models will always
have valid manifold topology.

Mechanism
Nearly every simplification technique in the literature

uses some variation or combination of four basic poly-
gon removal mechanisms: sampling, adaptive subdivi-
sion, decimation, and vertex merging. Because the
mechanism you use may affect an algorithm’s charac-
teristics, these are worth a few comments.

� Sampling algorithms sample the initial model’s geom-
etry, either with points on the model’s surface or vox-
els superimposed on the model in a 3D grid. These
are among the more elaborate and difficult to code
approaches. They may have trouble achieving high
fidelity since high-frequency features are inherently
difficult to sample accurately. These algorithms usu-
ally work best on smooth organic forms with no sharp
corners.

� Adaptive subdivision algorithms find a simple base

mesh that can be recursively subdi-
vided to closely approximate the ini-
tial model. This approach works
best when the base model is easily
found. For example, the base model
for a terrain is typically a rectangle.
Achieving high fidelity on general
polygonal models requires creating

a base model that captures the original model’s
important features, which can be tricky. Adaptive sub-
division methods preserve the surface topology,
which may limit their capacity for drastic simplifica-
tion. On the other hand, they suit multiresolution sur-
face editing well, because changes made at low levels
of subdivision propagate naturally to higher levels.

� Decimation techniques iteratively remove vertices or
faces from the mesh, retriangulating the resulting
hole after each step. These algorithms are relatively
simple to code and can be very fast. Most use strictly
local changes that tend to preserve the genus, which
again could restrict drastic simplification ability, but
these algorithms excel at removing redundant geom-
etry such as coplanar polygons.

� Vertex-merging schemes operate by collapsing two or
more vertices of a triangulated model together into a
single vertex, which in turn can be merged with other
vertices. Merging a triangle’s corners eliminates it,
decreasing the total polygon count (see Figure 5). Ver-
tex merging is a simple and easy-to-code mechanism,
but algorithms use techniques of varying sophistication
to determine which vertices to merge in what order.
Accordingly, vertex-merging algorithms range from
simple, fast, and crude to complex, slow, and accurate.
Edge-collapse algorithms (see Figure 6), which always
merge two vertices sharing an edge, tend to preserve
local topology, but algorithms permitting general ver-
tex-merge operations can modify topology and aggre-
gate objects, enabling drastic simplification of complex
objects and assemblies of objects

Static, dynamic, and view-dependent
simplification

The traditional approach to accelerating rendering
with polygonal simplification creates several discrete
versions of each object in a preprocess, each at a differ-
ent level of detail. At runtime, rendering algorithms
choose the appropriate LOD to represent the object.
Because distant objects use much coarser LODs, the total
number of polygons is reduced and rendering speed
increased. Because we compute LODs offline during pre-
processing, this approach can be called static polygonal
simplification. 

Static simplification has many advantages. Decou-
pling simplification and rendering makes this the sim-
plest model to program. The simplification algorithm
generates LODs without regard to real-time rendering
constraints, and the rendering algorithm simply choos-
es which LODs to render. Furthermore, modern graph-
ics hardware lends itself to the multiple model versions
created by static simplification, because each LOD can
be converted during preprocessing to triangle strips and
compiled as a separate display list. Rendering such dis-
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Vertex split

Edge collapse

6 The edge-collapse operation merges exactly two vertices that share an
edge. This eliminates two triangles from the mesh (one if the edge lies on a
boundary). A vertex split is the dual of an edge collapse, introducing two
triangles.

Vertex merge
5 The vertex-merge operation
clusters multiple vertices (green)
together into a single representa-
tive vertex (orange), eliminating
those triangles (aqua) whose corner
vertices are merged.



play lists will usually be much faster than rendering the
LODs as an unordered list of polygons.

Dynamic polygonal simplification departs from the tra-
ditional static approach. Whereas a static simplification
algorithm creates individual LODs during the prepro-
cessing stage, a dynamic simplification system creates
a data structure encoding a continuous spectrum of
detail. The desired LOD can be extracted from this struc-
ture at runtime. A major advantage of this approach is
better granularity. Since the algorithm specifies the LOD
for each object exactly, rather than choosing from a few
precreated options, it uses no more polygons than nec-
essary. This frees up more polygons for rendering other
objects. Better granularity thus leads to better use of
resources and higher overall fidelity for a given polygon
count. Dynamic simplification also supports progressive
transmission of polygonal models, in which a base
model is transmitted followed by a stream of refine-
ments to be integrated dynamically.6

View-dependent simplification extends dynamic sim-
plification by using view-dependent criteria to select the
most appropriate LOD for the current view. In a view-
dependent system, a single object can span multiple lev-
els of simplification. For instance, nearby portions of the
object may appear at a higher resolution than distant
portions, or silhouette regions of the object may appear
at a higher resolution than interior regions (see Figure
7). By allocating polygons where they’re most needed,
view-dependent simplification optimizes the distribu-
tion of this scarce resource.

Indeed, complex models representing physically large
objects often can’t be adequately simplified without view-
dependent techniques. Terrain models are a classic
example. Large terrain databases are well beyond the
interactive rendering abilities of even high-end graphics
hardware, but creating traditional LODs doesn’t help.
The viewpoint is typically quite close to part of the ter-
rain and distant from other parts, so a high LOD will pro-
vide good fidelity at unacceptable frame rates, while a
low LOD will provide good frame rates but terrible fideli-
ty. Breaking up the terrain into smaller chunks, each

comprising multiple LODs, addresses both problems but
introduces discontinuities between chunks. These dis-
continuities appear as cracks when two adjacent chunks
are represented at different LODs. A view-dependent
simplification system, however, can use a high LOD to
represent the terrain near the viewpoint and a low LOD
for parts distant, with a smooth degradation of detail
between. Not surprisingly, early work on view-depen-
dent simplification focused on terrains.13

The static simplification approach of creating multi-
ple discrete LODs in a preprocess is simple and works
best with most current graphics hardware. Dynamic
simplification supports the progressive transmission of
polygonal models and provides better granularity,
which in turn can provide better fidelity. View-depen-
dent simplification can provide even better fidelity for
a given polygon count and can handle models (such as
terrains) containing complex individual objects that are
physically large with respect to the viewer. An obvious
disadvantage of view-dependent systems is the
increased runtime load of choosing and extracting an
appropriate LOD. If the rendering system is CPU bound,
this additional load will decrease the frame rate, cutting
into the speedup provided by regulating LODs.

A brief catalog of algorithms
Several published algorithms follow, each classified

according to their underlying mechanism; how they
treat topology; and whether they use static, dynamic,
or view-dependent simplification. In some cases, I
describe a family of algorithms, with reference to papers
that improve or extend the original published algorithm.
The intent of this section isn’t to provide an exhaustive
list of work in the field of polygonal simplification, nor
to select the best papers, but to briefly describe a few
important algorithms that span the taxonomy present-
ed. You may choose to implement one of the algorithms
here (or download the code, if available), choose anoth-
er algorithm from the literature, or come up with your
own. Hopefully, this article will help you make an
informed decision.
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the viewer is simplified aggressively as distance increases (left). A sphere is simplified aggressively in interior and
backfacing regions, while high fidelity is preserved along the silhouette (right).



Triangle mesh decimation
Schroeder, Zarge, and Lorenson published one of the

first algorithms to simplify general polygonal models
and coined the term decimation for iterative removal of
vertices.2 Schroeder’s decimation scheme is designed
to operate on the output of the marching cubes algo-
rithm for extracting isosurfaces from volumetric data
and is still commonly used for this purpose. Marching
cubes output is often heavily overtessellated, with
coplanar regions divided into many more polygons than
necessary, and Schroeder’s algorithm excels at remov-
ing this redundant geometry.

The algorithm operates by making multiple passes
over all the vertices in the model. During a pass, the
algorithm considers deleting each vertex. If the vertex
can be removed without violating the neighborhood’s
local topology, and if the resulting surface would lie
within a user-specified distance of the unsimplified
geometry, the algorithm deletes the vertex and all its
associated triangles. This leaves a hole in the mesh,
which is then retriangulated. The algorithm continues
to iterate over the vertices in the model until it can’t
remove any more vertices. 

The vertices of a model simplified by the decimation
algorithm are a subset of the original model’s vertices.
This property is convenient for reusing normals and tex-
ture coordinates at the vertices, but it can limit the fideli-
ty of the simplifications since minimizing the geometric
error introduced by the simplified approximation to the
original surface can require changing the vertices’ posi-
tions.5 The decimation algorithm, designed to reduce
isosurfaces containing millions of polygons, is quite fast.
It’s also topology tolerant, accepting models with non-
manifold vertices but not attempting to simplify around
those vertices. Schroeder, Zarge, and Lorenson have
since developed a topology-modifying algorithm.14 Pub-
lic-domain decimation code is available as part of the
Visualization Tool Kit at http://www.kitware.
com/vtk.html.

Vertex clustering
This vertex-merging algorithm, first proposed by

Rossignac and Borrel,15 is topology insensitive, neither
requiring nor preserving valid topology. The algorithm
can therefore deal robustly with degenerate models with
which other approaches have little or no success. The
Rossignac–Borrel algorithm begins by assigning an

importance to each vertex. Vertices attached to large
faces and vertices of high curvature are considered more
important than vertices attached to small faces and ver-
tices of low curvature. Next, the algorithm overlays a
3D grid on the model and collapses all vertices within
each cell of the grid to the single most important vertex
within the cell. The grid’s resolution determines the
quality of the resulting simplification; a coarse grid will
aggressively simplify the model whereas a fine grid will
perform only minimal reduction. During the clustering
process, triangles whose corners are collapsed together
become degenerate and disappear.

Low and Tan16 introduced a different clustering
approach called floating-cell clustering. This technique
ranks the vertices by importance, and a cell of user-spec-
ified size is centered on the most important vertex. The
algorithm collapses all vertices falling within the cell to
the representative vertex and filters out degenerate tri-
angles as in the Rossignac–Borrel scheme. The most
important remaining vertex becomes the center of the
next cell, and the process repeats. Eliminating the
underlying grid greatly reduces the simplification’s sen-
sitivity to the model’s position and orientation. Low and
Tan also improved on the criteria used for calculating
vertex importance. Recently, Lindstrom extended the
Rossignac–Borrel algorithm in a different direction,
describing an out-of-core implementation that requires
only enough memory to store the final (simplified)
mesh.8 Lindstrom also used Garland and Heckbert’s
quadric error metric (described later) to place the rep-
resentative vertex for each cell.

One unique feature of the Rossignac–Borrel algo-
rithm is the fashion in which it renders triangles with
merged corners. Reasoning that a triangle with two
corners collapsed is a line and a triangle with three cor-
ners collapsed is a point, Rossignac and Borrel chose
to render such triangles using the graphics hardware
line and point primitives. Thus, a simplification of a
polygonal object will generally be a collection of poly-
gons, lines, and points. The resulting simplifications
are therefore more accurate from a schematic than a
strictly geometric standpoint. For the purposes of dras-
tic simplification, however, the lines and points can
contribute significantly to the recognizability of the
object. Low and Tan extended this concept, using thick
lines and a dynamically assigned normal to give a cylin-
der-like appearance to degenerate triangles collapsed
to lines.

The original Rossignac–Borrel algorithm and Lind-
strom’s out-of-core extension, which cluster vertices to
a 3D grid, are extremely fast and run in O(n) time for n
vertices. The Low–Tan variation is also quite fast, though
ranking the vertices by importance slows the algorithm
to O(n lg n). The methods do suffer some disadvantages.
Since the algorithms don’t preserve topology and don’t
guarantee the amount of error introduced by the sim-
plified surface, the resulting simplifications are often
less pleasing visually than those of slower algorithms.
Also, it’s difficult to specify the output of these algo-
rithms, since the only way to predict how many trian-
gles an LOD will have using a specified grid resolution
is to perform the simplification.

Tutorial

30 May/June 2001

The decimation algorithm, designed to

reduce isosurfaces containing millions of

polygons, is quite fast. It’s also topology

tolerant, accepting models with

nonmanifold vertices but not attempting

to simplify around those vertices. 



Multiresolution analysis of arbitrary meshes
This adaptive subdivision algorithm by Eck et al.17

uses a compact wavelet representation to guide a recur-
sive subdivision process. Multiresolution analysis, or
MRA, adds or subtracts wavelet coefficients to interpo-
late smoothly between LODs. This process is fast enough
to do at runtime, enabling dynamic simplification. By
using enough wavelet coefficients, the algorithm can
guarantee that the simplified surface lies within a user-
specified distance of the original model.

This work’s chief contribution is that it provides a
method for finding a simple base mesh that exhibits sub-
division connectivity, so that recursive subdivision will
recover the original mesh. As previously mentioned,
finding a base mesh is simple for terrain data sets but
difficult for general polygonal models of arbitrary topol-
ogy. MRA creates the base mesh by growing Voronoi-
like regions across the original surface’s triangles. When
these regions can’t grow anymore, the Voronoi sites
form a Delauney-like triangulation, and the triangula-
tion forms the base mesh. 

This algorithm possesses the disadvantages of strict
topology-preserving approaches. Manifold topology is
absolutely required in the input model, and the original
object’s shape and genus limit the potential for drastic
simplification. The fidelity of the resulting simplifica-
tions is quite high for smooth, organic forms. However,
the algorithm is fundamentally a low-pass filtering
approach and has difficulty capturing sharp features in
the original model unless the features happen to fall
along a division in the base mesh.6

Voxel-based object simplification
Topology-preserving algorithms must retain the orig-

inal object’s genus, which often limits their ability to per-
form drastic simplification. Topology-insensitive
approaches such as the Rossignac–Borrel algorithm
don’t suffer from these constraints but reduce the topol-
ogy of their models haphazardly and unpredictably.
Voxel-based object simplification by He et al.11 is an
intriguing attempt to simplify topology in a gradual and
controlled manner using a signal processing approach.

The algorithm begins by sampling a volumetric rep-
resentation of the model, superimposing a 3D grid of
voxels over the polygonal geometry. It assigns each voxel
a value of 1 or 0, according to whether the sample point
of that voxel lies inside or outside the object. Next, the
algorithm applies a low-pass filter and resamples the
volume. The result is another volumetric representation
of the object with a lower resolution. Sampling theory
guarantees that small, high-frequency features will be
eliminated in the low-pass-filtered volume. The algo-
rithm then applies marching cubes to generate a sim-
plified polygonal model. Because marching cubes can
create redundant geometry, He et al. used a standard
topology-preserving algorithm as a postprocess.

Unfortunately, high-frequency details such as sharp
edges and squared-off corners seem to contribute great-
ly to the perception of shape. As a result, the voxel-based
simplification algorithm performs poorly on models
with such features. This greatly restricts its usefulness on
mechanical CAD models. Moreover, the algorithm as

originally presented isn’t topology tolerant, since decid-
ing whether sample points lie inside or outside the object
requires well-defined, closed-mesh objects with mani-
fold topology.

Simplification envelopes
Cohen et al.9 introduced simplification envelopes to

guarantee fidelity bounds while enforcing global and
local topology. The simplification envelopes of a surface
consist of two offset surfaces, or copies of the surface off-
set no more than some distance ε from the original sur-
face. The outer envelope displaces each vertex of the
original mesh along its normal by ε, while the inner
envelope displaces each vertex by −ε. The envelopes
aren’t allowed to self-intersect; where the curvature
would create such a self-intersection, the algorithm
decreases ε in the local neighborhood.

Once created, these envelopes can guide the simpli-
fication process. Cohen et al. describe two decimation
approaches that iteratively remove triangles or vertices
and retriangulate the resulting holes. By keeping the
simplified surface within the envelopes, these algo-
rithms can guarantee that the simplified surface never
deviates by more than ε from the original surface and
that the surface doesn’t self-intersect. The resulting sim-
plifications tend to have excellent fidelity.

Where fidelity and topology preservation are crucial,
simplification envelopes prove an excellent choice. The
ε error bound is also an attractive feature of this
approach, providing a natural means for calculating LOD
switching distances. However, the strict preservation of
topology and the careful avoidance of self-intersections
curtail the approach’s capability for drastic simplifica-
tion. The construction of offset surfaces also requires an
orientable manifold, and topological imperfections in
the initial mesh can hamper or prevent simplification.
Finally, the algorithms for simplification envelopes are
intricate—writing a robust system based on simplifica-
tion envelopes seems a substantial undertaking. Fortu-
nately, Cohen et al. posted their implementation at
http://www.cs.unc.edu/~geom/envelope.html.

Appearance-preserving simplification
This rigorous algorithm by Cohen, Olano, and

Manocha3 takes the error-bounding approach of sim-
plification envelopes a step further, providing the best
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guarantees on fidelity of any simplification algorithm.
Fidelity is expressed in terms of maximum screenspace
deviation, meaning that the simplification’s appearance
when rendered should deviate from the original’s
appearance by no more than a user-specified number
of pixels. The authors identified three attributes that
affect the simplification’s appearance:

� Surface position: the coordinates of the vertices.
� Surface color: the color field across the mesh.
� Surface curvature: the field of normal vectors across

the mesh.

Algorithms that guarantee a limit on the deviation of
surface position (such as simplification envelopes) may
nonetheless introduce errors in surface color and cur-
vature that exceed that limit. For example, simplifying
a texture-mapped surface can introduce more distor-
tion in the texture map than in the actual geometry (see
Figure 8). Appearance-preserving simplification decou-
ples surface position from color and curvature by stor-
ing the latter in texture and normal maps (a normal map
resembles a bump map), respectively. The model then
reduces to a simple polygonal mesh with texture coor-
dinates, from which the simplification algorithm com-
putes LODs. The simplification process thus filters
surface position, while the graphics hardware filters
color and curvature information at runtime by MIP map-
ping the texture and normal maps.

The simplification process uses edge collapses, guid-
ed by a texture deviation metric that bounds the devia-
tion of a mapped attribute value from its correct position
on the original surface. The algorithm applies this devi-
ation metric to both the texture and normal maps; edge
collapses that cause surface color, normals, or position
to shift by more than the maximum user-specified dis-
tance ε aren’t allowed. Of course, this requirement con-
strains the degree of simplification possible, making
appearance-preserving simplification less suitable for
drastic simplification.

Although texture-mapping graphics hardware is com-
monplace, hardware support for normal- or bump-map-
ping is just beginning to appear in consumer-level

systems. Appearance-preserving simplification is thus
most useful today on models that don’t require dynamic
lighting, such as radiositized datasets. In the near future,
as more sophisticated shading becomes ubiquitous in
hardware, appearance-preserving simplification could
become the standard for high-fidelity simplification.

Quadric error metrics
This vertex-merging algorithm by Garland and Heck-

bert5 strikes perhaps the best balance yet between speed,
fidelity, and robustness. The algorithm proceeds by iter-
atively merging pairs of vertices, which need not be con-
nected by an edge. Candidate vertex pairs include all
vertex pairs connected by an edge, plus all vertex pairs
separated by less than a user-specified distance thresh-
old t. The algorithm’s major contribution is a new way
to represent the error introduced by a sequence of ver-
tex merge operations, called the quadric error metric. A
vertex’s quadric error metric is a 4 × 4 matrix that rep-
resents the sum of the squared distances from the ver-
tex to the planes of neighboring triangles. Because the
matrix is symmetric, 10 floating-point numbers suffice
to represent the geometric deviation introduced during
the course of the simplification.

The error introduced by a vertex-merge operation can
be quickly derived from the sum of the quadric error
metrics of the vertices being merged and that sum will
become the merged vertex’s quadric error metric. At the
beginning of the algorithm, all candidate vertex pairs
are sorted into a priority queue according to the error
calculated for merging them. The algorithm removes
the vertex pair with the lowest merge error from the top
of the queue and merges it. The algorithm then updates
the errors of all vertex pairs involving the merged ver-
tices and repeats the process.

Quadric error metrics provide a fast, simple way to
guide the simplification process with relatively minor
storage costs. The resulting algorithm is extremely fast.
The visual fidelity of the resulting simplifications tends
to be quite high, even at drastic levels of simplification.
Because disconnected vertices closer than t may merge,
the algorithm doesn’t require manifold topology. This
lets holes close and objects merge, enabling more dras-
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8 Texture coordinate deviation.
The original model (left, 1740
polygons) has a checkerboard
texture applied. Simplifying to a
single pixel tolerance without tak-
ing texture deviation into effect
(middle, 108 polygons) results in an
accurate silhouette but noticeable
texture distortion. Applying the
texture deviation metric (right, 434
polygons) guarantees texture as
well as silhouette correctness.
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tic simplification than topology-preserving schemes.
One disadvantage of the algorithm is that the number

of candidate vertex pairs, and hence the algorithm’s run-
ning time, approaches O(n2) as t approaches the model’s
size. Erikson and Manocha18 proposed an adaptive
threshold selection scheme that addresses this problem.
They also improved fidelity for certain models by incor-
porating a surface-area metric, and addressed the lack of
support for shading attributes (color, normal, and tex-
ture coordinates) in the original Garland–Heckbert algo-
rithm. Garland and Heckbert also described an extension
for color in a later paper,19 but Hoppe probably present-
ed the best extension of quadrics to handle attributes.20

All told, the simple-to-implement quadric-error-metrics
algorithm may be the best combination of efficiency,
fidelity, and generality currently available for creating
LODs. Even better, Garland and Heckbert released their
implementation as a software package called QSlim,
available at http://graphics.cs.uiuc.edu/~garland/
software/qslim.html.

Image-driven simplification
This unique algorithm by Lindstrom and Turk4 was

the first to address simplification directly in terms of how
the simplified model will look when rendered. Like the
quadric-error-metrics algorithm, simplification occurs
through a sequence of edge collapse operations. The
unique feature of image-driven simplification is the error
metric used to order the edge collapses. While all other
simplification algorithms to date use some form of geo-
metric criteria—possibly modified to account for color,
normal, and texture coordinate distortion—Lindstrom
and Turk used a purely image-based metric.

Put briefly, we can determine the cost of an edge col-
lapse operation by performing the collapse and render-
ing the model from multiple viewpoints. The algorithm
compares the rendered images to images of the original
model and sums up the mean-square error in luminance
across all pixels of all images. It sorts all edges under
consideration into a priority queue according to the total
error they induce in the images and chooses the edge
collapse that induces the least error. The algorithm then
reevaluates and resorts nearby edges into the queue and
continues the process.

Evaluating an edge collapse is clearly an expensive
step. Rendering the entire model for every edge and
from many viewpoints—Lindstrom and Turk used 20
viewpoints in their implementation—would be almost
prohibitively expensive, even with hardware-accelerat-
ed rendering. To reduce the cost, Lindstrom and Turk
exploited the fact that a typical edge collapse affects only
a small region of the screen and thus a small fraction of
the total triangles. They used a clever scheme for
“unrendering” and rerendering the affected triangles,
based on spatial hash tables that record the position of
each triangle within each image. In this way, only a
small portion of the triangles need be rendered per
image to evaluate each edge collapse.

Using an image-based metric addresses several
thorny problems in polygonal simplification. Most
geometry-based algorithms that account for surface
attributes such as color and texture coordinates use an

arbitrary user-specified weighting to determine the rel-
ative importance of preserving these attributes versus
preserving geometric fidelity. Evaluating each simplifi-
cation operation according to its effect on a rendered
image provides a direct, natural way to balance geo-
metric and shading properties. Other advantages of the
image-based approach include high-fidelity preserva-
tion of silhouette regions coupled with drastic simplifi-
cation of unseen model geometry, and simplification
sensitivity to artifacts caused by shading interpolation as
well as to the content of texture maps across the surface.

The primary disadvantage of the image-driven
approach for many developers will undoubtedly be the
algorithm’s speed. Despite the optimizations men-
tioned, reducing a model comprising tens of thousands
of polygons to a few hundred polygons could take
hours. To address this, Lindstrom and Turk performed
two passes, presimplifying the model with a fast geom-
etry-driven algorithm before applying image-driven
simplification. Still, the image-driven stage ranges from
several minutes to a few hours, much slower than the
fastest geometry-driven algorithms. Depending on the
application, however, the high visual quality of the
resulting simplifications will undoubtedly be worth the
wait to some developers.

Progressive meshes
A progressive mesh represents polygonal models as a

sequence of edge collapses. Hoppe introduced progres-
sive meshes as the first dynamic simplification algorithm
for general polygonal manifolds6 and later extended
them to support view-dependent simplification.21 A pro-
gressive mesh consists of a simple base mesh, created
by a sequence of edge collapse operations and a series of
vertex split operations. A vertex split (vsplit) is the dual
of an edge collapse (ecol). Each vsplit replaces a vertex
by two edge-connected vertices, creating one addition-
al vertex and two additional triangles. The vsplit oper-
ations in a progressive mesh correspond to the
edge-collapse operations used to create the base mesh.
Applying every vsplit to the base mesh will recapture
the original model exactly; applying a subset of the
vsplits will create an intermediate simplification. In fact,
the stream of vsplit records encodes a continuum of sim-
plifications from the base mesh up to the original model.
The vsplit and ecol operations are fast enough to apply
at runtime, supporting dynamic and view-dependent
simplification.

Along with the new representation, Hoppe described
a careful simplification algorithm that explicitly mod-
els mesh complexity and fidelity as an energy function
to be minimized. The algorithm evaluates all edges that
can be collapsed according to their effect on this ener-
gy function and sorts them into a priority queue. The
energy function can then be minimized in a greedy fash-
ion by performing the ecol operation at the head of the
queue, which will decrease the energy function. The
algorithm then reevaluates and resorts nearby edges
into the queue. This process repeats until topological
constraints prevent further simplification. The remain-
ing edges and triangles comprise the base mesh, and the
sequence of ecol operations performed becomes (in
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reverse order) the hierarchy of vsplit operations.
Hoppe introduced a nice framework for handling sur-

face attributes of a progressive mesh during simplifica-
tion. He categorized such attributes as discrete
attributes—associated with faces in the mesh and scalar
attributes—associated with corners of the faces in the
mesh. Common discrete attributes include material and
texture identifiers; common scalar attributes include
color, normal, and texture coordinates. Hoppe also
described how to model some of these attributes in the
energy function, letting normals, color, and material
identifiers guide the simplification process.

Hoppe described three view-dependent simplifica-
tion criteria. A view frustum test aggressively simplifies
regions of the mesh out of view, a backfacing test aggres-
sively simplifies regions of the mesh not facing the view-
er, and a screenspace error threshold guarantees that
the geometric error in the simplified mesh is never
greater than a user-specified screenspace tolerance.
Because the algorithm measures deviation tangent to
the surface separately from deviation perpendicular to
the surface, silhouette preservation falls out of this error
test naturally. Clever streamlining of the math involved
makes these tests surprisingly efficient. Hoppe reported
that evaluating all three criteria, which share several
subexpressions, takes only 230 CPU cycles on average.

The assumption of manifold topology is latent in the
progressive mesh structure, which may be a disadvan-
tage for some applications. Preserving topology prevents
holes from closing and objects from aggregating, which
can limit drastic simplification, and representing non-
manifold models as a progressive mesh might present
difficulties. Still, the progressive mesh representation
provides a powerful and elegant framework for polygo-
nal simplification. Hoppe’s energy-minimization
approach produces high-fidelity simplifications but is
relatively slow and seems somewhat intricate to code.
Note, however, that any algorithm based on edge col-
lapses can be used to generate a progressive mesh. For
example, the quadric-error-metrics approach would be
a fast and simple-to-code alternative. Although the pro-
gressive mesh code isn’t publicly available, Hoppe pub-
lished a paper describing its efficient implementation
in some detail.22

Hierarchical dynamic simplification
This vertex-merging approach by Luebke and Erik-

son7 was another of the first to provide a view-depen-
dent simplification of arbitrary polygonal scenes.
Hierarchical dynamic simplification (HDS) resembles
progressive meshes in many ways, with a hierarchy of
vertex merges applied selectively at runtime to effect
view-dependent simplification. The approaches differ
mostly in emphasis: progressive meshes emphasize
fidelity and consistency of the mesh, whereas HDS
emphasizes speed and robustness. Rather than repre-
senting the scene as a collection of objects, each at sev-
eral LODs, in the HDS algorithm the entire model
comprises a single, large data structure. This structure
is the vertex tree, a hierarchy of vertex clusters that HDS
queries to generate a simplified scene.

The system is dynamic. For example, clusters to be col-

lapsed or expanded can be chosen continuously based
on their projected size. As the viewpoint shifts, the
screenspace extent of some nodes in the vertex tree will
become small. These nodes can be folded into their par-
ent nodes, merging vertices together and removing some
now-degenerate triangles. Other nodes will increase in
apparent size and will be unfolded into their constituent
child nodes, introducing new vertices and triangles.

Different folding criteria can be plugged into the HDS
framework as callbacks that fold and unfold the appro-
priate nodes. Demonstrated criteria include a screen-
space error threshold, a silhouette test, and a triangle
budget. The screenspace error threshold monitors the
projected extent of vertex clusters and folds nodes small-
er than some number of pixels on the screen. The sil-
houette test uses a precalculated cone of normals to
determine whether a vertex cluster currently lies on the
silhouette, then tests clusters on the silhouette against a
tighter screenspace threshold than clusters in the interi-
or. Finally, HDS implements triangle-budget simplifica-
tion by maintaining a priority queue of vertex clusters.
The cluster with the largest screenspace error is unfold-
ed and its children placed in the queue. This process
repeats until unfolding a cluster would violate the trian-
gle budget.

Because constructing the vertex tree disregards tri-
angle connectivity, HDS neither requires nor preserves
manifold topology. Since the vertex tree spans the entire
scene, objects may be merged as simplification proceeds.
Together, these properties make HDS topology tolerant
and suitable for drastic simplification. HDS’ structures
and methods are also simple to code. On the other hand,
the fidelity of the resulting simplifications tends to be
lower than the fidelity of more careful algorithms.
Again, it’s important to emphasize that any algorithm
based on vertex merging (including those using edge
collapses) can be used to construct the HDS vertex tree.

This algorithm has been implemented as a public-
domain library called VDSlib that provides a framework
for view-dependent simplification, using user-defined
callbacks to control the construction, simplification,
culling, and rendering of the vertex tree. VDSlib is avail-
able at http://vdslib.virginia.edu. 

Issues, trends, and recommendations
The field of polygonal simplification seems to be

approaching maturity. For example, researchers are
converging on vertex merging as the underlying mech-
anism for polygon reduction. Hierarchical vertex-merg-
ing representations such as progressive meshes and the
HDS vertex tree provide general frameworks for exper-
imenting with different simplification strategies, includ-
ing view-dependent criteria. Settling on this emerging
standard will let the simplification field make faster
strides in other important issues, such as determining a
common error metric.

The lack of an agreed-upon definition of fidelity seri-
ously hampers comparison of results among algorithms.
Most simplification schemes use some sort of distance-
or volume-based metric in which fidelity of the simpli-
fied surface is assumed to vary with the distance of that
surface from the original mesh. Cignoni et al.23
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described a nice tool called Metro, available at http://
vcg.iei.pi.cnr.it/metro.html, for measuring and visual-
izing this sort of geometric fidelity.

Probably the most common use of polygonal simpli-
fication, however, is to speed up rendering for visual-
ization of complex databases. For this purpose, the most
important measure of fidelity isn’t geometric but per-
ceptual: Does the simplification look like the original?
To date, only Cohen’s appearance-preserving simplifi-
cation3 and Lindstrom’s image-driven simplification4

attempt to address this question. Perceptual metrics and
perceptually driven simplification seem like crucial top-
ics for further research.

Dozens of simplification algorithms have been pub-
lished over the last few years and dozens more have
undoubtedly been whipped up by developers who were
unaware of, or confused by, the plethora of polygonal
simplification techniques. Hopefully this article will help
developers consider the right issues and pick an algo-
rithm that best suits their needs. �
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Abstract

View-dependent simplification has emerged as a powerful tool
for graphics acceleration in visualization of complex environ-
ments. However, view-dependent simplification techniques
have not been able to take full advantage of the underlying
graphics hardware. Specifically, triangle strips are a widely
used hardware-supported mechanism to compactly represent
and efficiently render static triangle meshes. However, in
a view-dependent framework the triangle mesh connectivity
changes at every frame making it difficult to use triangle strips.
In this paper we present a novel data-structure, Skip Strip,
that efficiently maintains triangle strips during such view-
dependent changes. A Skip Strip stores the vertex hierarchy
nodes in a skip-list-like manner with path compression. We
anticipate that Skip Strips will provide a road-map to combine
rendering acceleration techniques for static datasets, typical of
retained-mode graphics applications, with those for dynamic
datasets found in immediate-mode applications.

1 Introduction

Recent advances in three-dimensional acquisition, simulation,
and design technologies have led to generation of datasets
that are beyond the interactive rendering capabilities of cur-
rent graphics hardware. Several software and algorithmic so-
lutions have been recently proposed to bridge the increasing
gap between hardware capabilities and the complexity of the
graphics datasets. These include level-of-detail rendering with
multi-resolution hierarchies, occlusion culling, and image-
based rendering. Graphics rendering has also been accelerated
through compact representations of polygonal meshes using
data-structures such as triangle strips and triangle fans.

Recently, view-dependent simplifications have been intro-
duced to enable fine-grained changes to multiresolution hier-
archies that depend on parameters such as view location, illu-
mination, and speed of motion. Such simplifications change
the mesh structure at every frame to adapt to just the right
level of detail necessary for visual realism. One drawback of
such schemes is that they fail to take advantage of hardware-
supported mechanisms for graphics acceleration, such as tri-
angle strips. Luebke and Erikson [12] point out that view-
dependent simplification being an immediate-mode technique
has a relative disadvantage since most current graphics hard-
ware takes advantage of retained-mode representations such
as display lists that have static geometry and connectivity. To
overcome this drawback Hoppe [9] has proposed a solution to
compute triangle strips per frame for the view-dependent sim-
plification specific to that frame. In this paper we introduce
Skip Strips as a solution to this dichotomy of immediate-mode

simplifications and retained-mode hardware-supported accel-
eration.

A Skip Strip stores the vertex hierarchy nodes in a skip-
list-like manner with path compression. Our approach com-
bines the advantages of the two methods – selection of varied
level-of-detail at different regions of the surface from view-
dependent simplification and faster rendering from triangle
strip representations. In addition, Skip Strips do not need to
store dependency lists traditionally used in view-dependent
simplifications. Hence the test to prevent fold overs at run
time is done in constant time, takes advantage of coherence
between frames, and incrementally updates the displayed tri-
angle strips. By using triangle strips, our algorithm is able
to display the same number of triangles faster and uses less
memory to store the active set of triangles.

2 Previous Work

In this section we give an overview of previous work done
in the areas of view-dependent simplifications, triangle strip
generation, and path compression data-structures.

2.1 View-Dependent Simplifications

Most of the previous work on generating multiresolution hi-
erarchies for level-of-detail-based rendering has concentrated
on computing a fixed set of view-independent levels of de-
tail. At runtime an appropriate level of detail is selected based
on viewing parameters. Such methods are overly restrictive
and do not take into account finer image-space feedback such
as light position, visual acuity, silhouettes, and view direc-
tion. Recent advances to address some of these issues in a
view-dependent manner take advantage of the temporal co-
herence to adaptively refine or simplify the polygonal envi-
ronment from one frame to the next. In particular, adaptive
levels of detail have been used in terrains by Grosset al [6]
and Lindstromet al [10]. A number of techniques for con-
ducting view-dependent simplifications of generalized polyg-
onal meshes rely on the primitive operations of vertex-split and
edge collapse as shown in Figure 1. The edge(pc) in the mesh
on the left collapses to the vertexp and the resulting mesh is
shown on the right. Conversely, the vertexp in the mesh on
the right can split to the edge(pc) to generate the mesh on the
left. Let the vertexp be considered the parent of the vertexc
(asc is created fromp through a vertex split). The primitves
of vertex split and edge collapse were proposed in the context
of progressive meshes [8].

View-dependent simplifications using the edge-
collapse/vertex-split primitives include work by Xiaet
al [16], Hoppe [9], and Gueziecet al [7]. View-dependent
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simplifications by Luebke and Erikson [12], and De Floriani
et al [2] do not rely on the edge-collapse primitive. Our work
is most directly applicable to view-dependent simplifications
that are based upon the vertex-split/edge-collapse primitive;
its extension to more general view-dependent simplifications
is a part of our planned future work.

2.2 Triangle Strips

Triangle strips provide a compact representation of triangular
meshes and are supported by several graphics APIs includ-
ing OpenGL. Triangle strips enable fast rendering and trans-
mission of triangular meshes. An example triangle strip in
the model of a cow is shown in Figure 2. The set of trian-
gles shown in Figure 3(a) can be compactly represented by
a triangle strip(1, 2, 3, 4, 5, 6), where theith triangle is de-
scribed by theith, (i + 1)st, and(i + 2)nd vertices in this
sequence. Such triangle strips are referred to assequential tri-
angle strips. A sequential triangle strip allows rendering of
n triangles using onlyn + 2 vertices instead of3n vertices.
This results in substantial saving for memory bandwidth and
computation of per-vertex operations such as transformations,
lighting, and clipping. Sequential triangle strips cannot how-
ever represent general sequences of triangles, such as the one
shown in Figure 3(b). To represent such triangle sequences,
the notion of triangle strips has been extended togeneralized
triangle stripswhere the two vertices of the previous trian-
gle can be swapped. This can be also simulated by repeating
vertices. Thus, the triangle sequence in Figure 3(b) can be
represented as(1, 2, 3, 4, 5, 4, 6, 7).

Figure 2: A triangle strip in a cow model

Akeley et al [1] have developed a program that constructs
generalized triangle strips for a given triangle mesh model [1].
The algorithm tries to generate strips which minimize the num-
ber of one-triangle strips. This algorithm chooses the triangle
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Figure 3: A triangle strip example

which is adjacent to the least number of neighbors as the next
triangle in a strip. Evanset al [4] use global adjacency infor-
mation in conjunction with several heuristics such as maximiz-
ing the length of each strip, minimizing swaps, and minimiz-
ing the number of single-triangle strips. Their experimental
results have shown an improvement of about15% less ver-
tices than [1]. Speckmann and Snoeyink [14] have computed
the triangle strips for triangulated irregular networks by cre-
ating a spanning tree of the dual graph of the TIN and then
traversing the tree in a modified depth-first fashion.

2.3 Efficient Link Traversal

Let us study what happens when an edge collapses in a triangle
strip. Figure 4 shows such a situation. As can be seen, the
results of an edge collapse can be represented by replacing all
occurrences of the child vertexc with the parent vertexp. In
this example,c = 2 andp = 4.
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Figure 4: Edge Collapse in a Triangle Strip

The above example illustrates that to maintain triangle
strips under view-dependent changes to the triangle mesh con-
nectivity, we should replace each vertex in a triangle strip by
its nearest uncollapsed ancestor. In an arbitrarily long se-
quence of such edge collapses, it is easy to see why efficient
traversal of links to a vertex’s ancestors becomes important.

Skip list [13] has been proposed as an efficient probabilis-
tic data-structure to store and retrieve data. Skip lists can also
be used for efficient compression of pointer paths. Consider a
simple linked list as shown in Figure 5(a). Reaching then-th
node on this list requires O(n) pointer hops. Consider next a
data-structure that resembles a binary tree and has O(n) addi-
tional pointers that connect linked-list nodes that are2 away,
4 away,. . ., 2log n away (refer Figure 5(b)). Using these ad-
ditional pointers, any node on the linked list can be accessed
in O(log n) hops. Skip lists generate such additional pointers
in a probabilistic manner to provide the same O(log n) access
time (refer Figure 5(c)), but in practice have been shown to be
faster.

In a skip list, a node that hask forward pointers is a levelk
node. The level of a node is determined in a probabilistic man-
ner. The search for an element is done by traversing forward
pointers that do not overshoot the required element. When no
more progress is possible, the search moves down to the next
level. This is shown by the gray path in Figure 5(c). To ac-
complish insertion or deletion of an element in a skip list, a
search is carried out for that element using the above method.
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A vector of pointers is set up during this search that represents
the set of pointers that are changed to implement the insert or
delete operation.

3 Technical Background

In this paper we build upon two previous algorithms – con-
struction of vertex hierarchy for view-dependent simplifica-
tions [16, 9] and construction of efficient triangle strips [4].
Let us overview these two algorithms next.

3.1 Construction of Merge Trees

Merge trees have been introduced by Xiaet al [16] as a data-
structure built upon progressive meshes [8] to enable real-time
view-dependent rendering of an object. As discussed earlier,
let the vertexp in Figure 1 be considered the parent of the ver-
tex c. Theneighborhoodof a vertexv is defined as the set
of triangles that are adjacent tov. The neighborhood of an
edge(va, vb) is defined as the union of neighborhoods ofva

andvb. The merge tree is constructed in a bottom-up fash-
ion from a high-detail mesh to a low-detail mesh by storing
these parent-child relationships (representing edge collapses)
in a hierarchical manner over the surface of an object. At each
levell of the tree a maximal set of edge-collapses is selected in
the shortest-edge-first order and with the constraint that their
neighborhoods do not overlap. The vertices remaining after
these edge collapses are promoted to levell + 1.

Active Nodes

Low Detail

High Detail

Figure 6: Varying detail in a Merge Tree

View-dependent simplification is achieved by performing
edge-collapses and vertex-splits on the triangulation used for
display depending upon view-dependent parameters such as
lighting (detail is directly proportional to intensity gradient),
polygon orientation, (high detail for silhouettes and low de-
tail for backfacing regions) and screen-space projection. This

is shown in Figure 6. Since there is a high temporal coher-
ence the selected levels in the merge tree change only gradu-
ally from frame to frame. Unconstrained edge-collapses and
vertex-splits during runtime can be shown to result in mesh
foldovers resulting in visual artifacts such as shading disconti-
nuities. To avoid these artifacts Xiaet al propose the concept
of dependencies or constraints that necessitate the presence of
the entire neighborhood of an edge before it is collapsed (or
its parent vertex is split). Thus, for the example shown in Fig-
ure 1, the neighborhood of edgepc should consist exactly of
verticesn0 . . . n6 for c to collapse top. Similarly, for the ver-
tex p to split to c, the vertices adjacent top should be exactly
the setn0 . . . n6. Our current implementation of merge trees
can construct the merge tree for 69K triangles bunny model in
10.3 seconds on an SGI Onyx 2.

3.2 Generating Triangle Strips

We use theStripeprogram by Evanset al [4] to generate high
quality triangle strips. This approach considers the problem of
constructing good triangle strips from polygonal models. Of-
ten such models are not fully triangulated, and contain quadri-
laterals and other non-triangular faces, which must be trian-
gulated prior to rendering. The choice of triangulation can
significantly impact the cost of the resulting strips. Evanset al
have experimented with several variants of local and global al-
gorithms; the details are available in [4]. After comparing the
results from20 different local and global approaches on over
200 datasets, the best option has been empirically observed to
use the global row or column strips with a patch cutoff size of
5. In this approach the model is first partitioned into regions
that have collections ofm × n quadrilaterals arranged inm
rows andn columns, which is referred to as apatch. Each
patch whose number of quadrilaterals,mn, is greater than a
specified cutoff, in this case 5, is converted into one strip, at
a cost of three swaps per turn. Further, every such strip is ex-
tended backwards from the starting quadrilateral and forwards
from the ending quadrilateral of the patch to the extent possi-
ble. On triangulated models like the ones we consider in this
paper,Stripehas been found to work as well as other public-
domain triangle strip converters.StripeVersion 2.0 [3] con-
verts the 69K triangles bunny model into triangle strips in6
seconds on an SGI Onyx 2.

4 Our Approach

In our approach we first generate a merge tree file as
overviewed above in Section 3.1 and described in [16]. This
file contains the parent-child relationships for each node of
the tree. Even though our implementation uses merge trees,
the concept of Skip Strips is quite general and can be used
in conjunction with other vertex-collapse-based simplification
schemes as well. We next generate the triangle strip represen-
tation of the original polygonal model using theStripe pro-
gram as overviewed above in Section 3.2 and described in [4].
At run-time we load the merge tree and the triangle strip rep-
resentations generated during preprocessing and build theSkip
Strip data-structure on the fly. Then, depending on scene pa-
rameters such as eye position, local illumination, front/back-
facing regions, we perform vertex split and edge collapse oper-
ations directly on the Skip Strips. The information from Skip
Strips is then used to generate triangle strips for display.



4.1 Skip Strip data-structure

A Skip Strip is an array of Skip Strip nodes. Each Skip Strip
node contains vertex information, a list of child pointers and a
parent pointer. We shall see in Section 4.3 how to generalize
this data-structure to support a list of parent pointers to accel-
erate access in a edge-collapse hierarchy. Exactly one of the
child pointers is marked as anactivechild pointer. This can
be seen in Figure 7 where the parent pointers are shown on the
right and the list of child pointers is shown on the left of each
Skip Strip node. Also, the parent pointer of the node is marked
active if this node has collapsed to its parent at a given stage
of simplification; otherwise it is markedinactive.
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Figure 7: A Skip Strip node

A Skip Strip is constructed at run time from the merge tree
and the triangle strip representations. A Skip Strip node is allo-
cated for every merge tree node and then parent-child pointers
are set up to mimic the merge tree structure. In our current im-
plementation we are assuming that a child vertexc collapses to
a parent vertexp. For this case, a Skip Strip node correspond-
ing to a vertexp will have child pointers to all its children,
includingc, that collapse to it at different stages of simplifica-
tion. In general, if there aren vertices then the height of the
merge tree isO(log n). Thus, the length of this child-pointer
list for a Skip Strip node could beO(log n). At a given time
only one of these child pointers is flaggedactiveand represents
the node that will result from the most imminent split. Each
Skip Strip node points to its immediate parent via the parent
pointer.

To illustrate the Skip Strip data-structure, let us see how it
is built from a merge tree. Figure 8(a) shows a hypothetical
merge tree over four vertices 1 to 4. As in all the merge tree
diagrams in this paper, the right node is the child node and
the left node is the parent node (as defined by Figure 1). The
equivalent Skip Strip data-structure will have four nodes repre-
senting the leaves of the merge tree (the highest detail vertices
in the original model). Since according to the merge tree ver-
tex 2 can merge to verex 1, the parent pointer for the Skip Strip
node 2 will point to Skip Strip node 1 and the child pointer for
the node 1 will point to node 2. Similarly the parent and child
pointers of Skip Strip nodes 3 and 4 will be set. This stage is
shown in Figure 8(b). Next, let us assume that we are dealing
with edge collapses in which one vertex collapses to another
(i.e. no new vertices are created). Therefore in our merge tree
of Figure 8(a), node 5 is a representation of node and node 6 is
a representation of node 3. Since node 6 collapses into node 5,
it follows that node 3 will merge to node 1. As a result, node

7 just represents node 1. This structure can be represented in
the Skip Strip as a parent pointer from node 3 to node 1 and a
child pointer from node 1 to node 3. The completed Skip Strip
structure is shown in Figure 8(c).

Figure 8: Building a Simple Skip Strip

The method that we have outlined above assumes that in an
edge collapse fromc to p, the new vertex isp. However, sev-
eral other researchers have pointed out the advantage of cre-
ating new vertices during edge collapses. These new vertices
could be created for accomplishing geomorphs [8] or for better
placement of approximating vertices using sophisticated error
metrics [5, 11]. For incorporating such simplification metrics
into the framework of Skip Strips we suggest storing multiple
coordinate sets, once per approximating vertex, in the child
pointer of the Skip Strip node.

4.2 Real-Time Adaptive Representation

Once the Skip Strip has been constructed it is easy to con-
struct an adaptive level-of-detail mesh representation during
run-time. Real-time adaptive mesh representation involves the
determination of the vertices and the triangle strips at the cur-
rent level of detail. We shall refer to the vertices and triangle
strips selected for display at a given frame asdisplay vertices
anddisplay strips.

4.2.1 Determination of display vertices

Determination of display vertices proceeds along the same
lines as proposed in earlier work on view-dependent simpli-
fication [16, 9] where image-space feedback is used to guide
the selection of the level of detail for the mesh. We deter-
mine which region of an object to simplify more and which
to simplify less using several parameters such as viewer loca-
tion and orientation, local illumination, and front/back-facing
regions of an object. As mentioned earlier, every node of the
merge tree stores aswitch value. If the computed value of the
view-dependent error at a given nodev is less than theswitch
valuestored at nodev, then nodev splits. If the computed
value is larger than theswitch valuestored at the parent of
nodev, thenv merges. In addition to these criteria,each col-
lapse and split also depends on the validity of the operation as
determined during the preprocessing to avoid artifacts such as
mesh foldovers as explained earlier in Section 3.1. One way to
avoid such artifacts is to use dependencies [10, 16]. Until now
these dependenciesneeded to be stored as a set of adjacent ver-
tices. This resulted in high storage as well as verification costs.
However, using the Skip Strip data-structures we have found
that these checks can be reduced to just one pointer traversal.
The Skip Strip structure encodes the sequence of vertex splits
and edge collapses in the same order as they were permitted
during the pre-processing. Therefore to validate a potential
vertex split ofv to a child vertexc we verify thatc is being
pointed to by the currently active child pointer forv. Simi-
larly, a potential collapse of a vertexv to a parentp just needs
to verify that the active parent pointer ofv is currently point-
ing to p. We have discovered that these simpler checks have
reduced the times for checking and performing a vertex split
or edge collapse from around60µsecs to6µsecs.



4.2.2 Determination of display strips

Our scene is represented as a set of triangle strips. Each trian-
gle strip has two representations – the original highest resolu-
tion triangle strip that was generated using pre-processing and
the Skip-Strip-derived run-time representation of it that repre-
sents a triangle strip suitable for the current level of detail. We
refer to the former as aoriginal triangle stripand the latter as
adisplay strip. At each frame we first perform view dependent
edge collapses/vertex splits as outlined in Section 4.2.1. Each
time an edge collapses or vertex splits, all display strips that
contain that edge are flagged as modified. At the end of these
simplifications if a display strip remains unmodified it is used
for rendering. However, if a display strip is modified we dis-
card it and begin generating its replacement by scanning each
vertex in the corresponding original triangle strip. Each vertex
of the original triangle strip has a pointer to a corresponding
node in a Skip Strip. For each vertex’s node in the Skip Strip
we check if its parent pointer is active or not. If the parent
pointer is active we follow the sequence of active parent point-
ers until we reach a node that has an inactive parent pointer.
The vertex information stored with the first node that has an
inactive parent pointer is added to the new display strip. After
the new display strip has been completely generated it is sent
to the graphics system for display.

Let us next illustrate how the Skip Strips are used to split
and collapse vertices of a triangle strip to generate the display
strips. Figure 9 shows the original mesh with vertices num-
bered1..10. The two triangle strips representing this mesh are
labeleda andb. Since no edges have collapsed, the display
strips are the same as the original triangle strips. Figure 10
shows the merge tree and the skip strip with one parent pointer
per node, constructed for the mesh in Figure 9 at the high-
est detail. Figure 11 shows the same after two edge collapses
(6 → 5, and8 → 7) to the mesh of Figure 9. In Figure 10
none of the parent pointers is active (since there have been no
edge collapses). In Figure 11, the parent pointers for nodes6
and8 that point to5 and7 respectively, are active and appear
shaded.
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Figure 9: Original triangle mesh

4.3 Efficient Skipping for Parent pointers

As the object moves to a coarser representation, the time spent
in following the active parent pointers increases. The maxi-
mum number of active parent pointers that one might need to
traverse isO(log n) – the height of the vertex hierarchy. To re-
duce this time we trade off memory for speed. To accomplish
this we use ideas from path compression [15] and skip lists
[13] to build a list of parent pointers for each Skip Strip node
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Figure 10: Skip Strip for Triangle Mesh in Figure 9
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Figure 11: Skip Strip for Triangle Mesh in Figure 9 after two
edge collapses

that point to ancestors of this node that are1, 2, 4, 8, . . . , log n
away in the edge collapse hierarchy. By using an efficient,
skip-list-like pointer hopping scheme we can reduce this to
O(log log n). Although reducing aO(log n) factor might
seem minor, in practice this results in an appreciable dif-
ference, especially when we note that the merge tree height
is generally a logarithm to the base5/4 [16]. Thus, even
if the edge-collapse-based vertex hierarchy tree is balanced
(which often is not), the height for a tree over one million
vertices (and therefore the worst-case pointer hopping) will
be 62 (∼ log1.25(106)) while a skip-list-like pointer hopping
scheme will only need to traverse 6 (∼ log2 62) pointers, an
order of magnitude improvement for present-day datasets.

In this scheme each Skip Strip node has an active parent
field to indicate which pointer in the parent list to follow to get
closest to, without overshooting, the first active ancestor. We
use a lazy update scheme to modify the active parent field for
each Skip Strip node. For this we make use of the fact that
the vertex hierarchy nodes are collapsed in an accordion-style
fashion from high-detail to low-detail. In other words if a ver-
tex i collapses to vertexj, then it means thatall vertices that
lie in the sub-tree rooted at vertexi have already collapsed to
vertexi. If the triangle strips reference one of the vertices in
this sub-tree rooted ati and if their active parent pointer over-
shootsj, then we need to decrement the active parent pointer
till it points to anode that is belowj (in other words has al-
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Figure 12: More efficient Skip Strip representations for Fig-
ures 10 and 11

ready collapsed). Because of a high temporal coherence, these
updates are few and each requires only one or two ancestor
checks to find the “correct” ancestor that does not overshoot
the first active ancestor. Similarly, when a vertexj splits to
verticesi andj we update all pointers from triangle strips that
point to j as the first active ancestor to point to a lower level
ancestor. We would like to point out that in this application,
traversal of triangle strips requires that we access each vertex
of the triangle strip and therefore the overhead of such lazy
updates of pointers to reflect split and collapse in Skip Strips
is minimal. Figure 10 shows the Skip Strip representation with
multiple parent pointers, as described above, for the mesh of
Figure 9. The active parent pointers appear in bold lines.

4.4 Filtering Triangle Strips

As the model moves to coarser levels the triangle strips begin
to accumulate identical vertices. Sending such vertices mul-
tiple times is equivalent to sending degenerate triangles that
do not contribute to the final scene but add an overhead to the
graphics rendering. To address this we filter the triangle strips
while sending them to the graphics engine. We have imple-
mented a simple triangle strip scanner that detects and replaces
patterns of vertices of the regular expression form(aa)+ and
(ab)+ from the sequence of vertices sent for rendering and
replaces them with(aa) or (ab) as appropriate.

5 Results

We have implemented Skip Strips and have obtained the re-
sults shown in Tables 1 and 2. All of these results have been
obtained on an SGI Onyx 2 with four R10000 processors, 1
GB RAM. The video tape has been generated using two of
these four processors – one processor was used for display
and the second processor was used for view-dependent sim-
plifications and skip-strip maintenance. Timings reported here
do not assume parallelization.

Table 1 shows the comparison between rendering datasets
using triangle representation as in the conventional view-
dependent rendering and rendering using Skip Strips. As can
be seen the number of vertices sent is substantially less for
Skip Strips since they incrementally maintain triangle strips
that are used for final rendering.

Frame Triangles Skip Strips
Dataset Tris Display Verts Display Verts

(msec) Sent (msec) Sent
10.2K 27.1 30.6K 16.0 22K

Bunny 50.8K 120.1 152.4K 78.1 83K
69.4K 166.1 208.2K 101.0 92K
71.4K 129.0 214.2K 103.0 160K

Terrain 255.5K 651.2 766.5K 401.2 480K
522.2K 1573.5 1566.6K 991.3 550K
90.4K 134.1 271.2K 103.1 181K

AMR 180.6K 385.4 541.8K 213.7 320K
340.2K 573.1 1020.6K 297.4 491K
107.8K 256.2 323.4K 204.1 205K

Dragon 445.5K 850.3 1336.5K 611.2 800K
871.3K 1908.2 2613.9K 1184.5 1280K

Table 1: Comparison between Raw Triangles and Skip Strips
for Rendering

Table 2 shows the advantage of using Skip Strips over re-
computing triangle strips at every frame. As can be seen from
this table, recomputing triangle strips results in fewer vertices
being sent as compared to those using Skip Strips. However,
the total cost of recomputing triangle strips along with the time
for their display far exceeds the cost of maintaining, updating,
and displaying triangle strips using Skip Strips. All times re-
ported below are wall clock times (not CPU times).

The datasets used for the above results appear in Figures
12, 13, and 14. In these figures, parts (a) show an interme-
diate level of view-dependent simplification, while parts (b),
(c), and (d) show how the triangle strips are maintained across
different levels of detail using Skip Strips. Colors in parts (a)
depict object colors whereas colors in parts (b), (c), and (d)
denote different triangle strips.

6 Conclusions

We have shown how Skip Strips can provide a convenient
and simple representation to integrate retained-mode data-
structures such as triangle strips with immediate-mode view-
dependent simplifications. The Skip Strips offer two main ad-
vantages. First, they make pointer hopping along parent links
in any hierarchical vertex collapse scheme efficient. Second,
they simplify the tests for vertex split and edge collapse to be
as simple as verification of their active child and active parent
pointers.



Triangles Strips Skip Strips
Dataset in Frame Construction Display Vertices Triangle Strip Display Vertices

(msec) (msec) Sent Updates (msec) (msec) Sent
5K 310 4.6 8K 5.3 6.4 10K

Bunny 30K 2120 23.1 35K 13.1 30.3 42K
65K 5310 84.6 90K 25.2 85.2 90K
32K 2190 54.3 60K 15.2 78.4 90K

Terrain 255K 24630 370.5 411K 150.3 401.2 480K
522K 131070 450.3 550K 230.0 460.3 550K
65K 4100 72.4 80K 32.3 101.3 130K

AMR 170K 14300 173.2 268K 60.8 201.4 300K
340K 35810 291.5 491K 101.2 297.4 491K

Table 2: Computing Triangle Strips per frame versus Skip Strips

Skip Strips provide the advantage of hardware-assisted ac-
celeration to view-dependent simplifications. However, they
also suffer from some of the same limitations that afflict tri-
angle strips. Thus, Skip Strip performance will not be very
good for datasets that have several discontinuities in surfaces
(cracks, holes, T-junctions), normals, colors, and textures. For
such datasets the triangle strips that are generated have to be
split across such surface attribute discontinuities thereby lim-
iting their efficacy in succinctly representing the polygonal
mesh. Although this does affect overall performance, the re-
sults will likely still be better than rendering raw triangles.

Another issue to consider is the performance of Skip Strips
over genus-reducing simplifications. Our preliminary results
indicate that Skip Strips are also applicable to view-dependent
genus-reducing simplifications; we need to test this further.
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(a) 30K triangles (b) 5K triangles (c) 30K triangles (d) 65K triangles
Figure 12: Skip strips across varying resolutions for the Stanford Bunny model

(a) 255K triangles (b) 32K triangles (c) 255K triangles (d) 522K triangles
Figure 13: Skip strips across varying resolutions for the Terrain dataset

(a) 170K triangles (b) 65K triangles

(c) 170K triangles (d) 340K triangles

Figure 14: Skip strips across varying resolutions for the Auxilliary Machine Room dataset
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Abstract

We present an algorithm for performing adaptive real-time level-of-detail-based rendering
for triangulated polygonal models. The simplifications are dependent on viewing direction,
lighting, and visibility and are performed by taking advantage of image-space, object-space,
and frame-to-frame coherences. In contrast to the traditional approaches of precomputing a
fixed number of level-of-detail representations for a given object our approach involves stati-
cally generating a continuous level-of-detail representation for the object. This representation
is then used at run-time to guide the selection of appropriate triangles for display. The list
of displayed triangles is updated incrementally from one frame to the next. Our approach is
more effective than the current level-of-detail-based rendering approaches for most scientific
visualization applications where there are a limited number of highly complex objects that stay
relatively close to the viewer. Our approach is applicable for scalar (such as distance from the
viewer) as well as vector (such as normal direction) attributes.

1 Introduction

The scientific visualization and virtual reality communities have always faced the problem that
their “desirable” visualization dataset sizes are one or more orders of magnitude larger than what
the hardware can display at interactive rates. Recent research on graphics acceleration for the
navigation of such three-dimensional environments has been motivated by attempts to bridge the
gap between the desired and the actual hardware performance, through algorithmic and software
techniques. This research has involved reducing the geometric and rendering complexities of the
scene by using

� statically computed level-of-detail hierarchies [35, 32, 31, 10, 25, 14, 22],

� visibility-based culling that is statically computed [1, 34] and dynamically computed [18,
27, 17],

c1997 IEEE, reprinted with permission from IEEE Transactions on Visualization and Computer Graphics, June
1997
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� various levels of complexity in shading and illumination models[4],

� texture mapping [6, 5], and

� image-based rendering [8, 7, 29, 33, 13].

In this paper we will focus on reducing the geometric complexity of a three-dimensional en-
vironment by using dynamically computed level-of-detail hierarchies. Research on simplification
of general three-dimensional polygonal objects (non-convex, non-terrain, possibly high genus) has
spanned the entire gamut of highly local to global algorithms, with several approaches in between
that have both local and global steps.

Local algorithms work by applying a set of local rules, which primarily work under some
definition of alocal neighborhood, for simplifying an object. The local rules are iteratively applied
under a set of constraints and the algorithm terminates when it is no longer possible to apply the
local rule without violating some constraint. The global algorithms optimize the simplification
process over the whole object, and are not necessarily limited to the small neighborhood regions on
the object. Some of the local approaches have been – vertex deletion by Schroederet al [32], vertex
collapsing by Rossignac and Borrel [31], edge collapsing by Hoppeet al [26] and Guéziec [20],
triangle collapsing by Hamann [21], and polygon merging by Hinker and Hansen [24]. Some of
the global approaches have been – redistributing vertices over the surface by Turk [35], minimizing
global energy functions by Hoppeet al [26], using simplification envelopes by Varshney [36] and
Cohenet al [10], and wavelets by DeRoseet al [14]. The issue of preservation or simplification
of the genus of the object is independent of whether an algorithm uses local rules, or global rules,
or both, to simplify. Recent work by Heet al [22] provides a method to perform a controlled
simplification of the genus of an object.

Simplification algorithms such as those mentioned above are iteratively applied to obtain a
hierarchy of successively coarser approximations to the input object. Such multiresolution hier-
archies have been used in level-of-detail-based rendering schemes to achieve higher frame update
rates while maintaining good visual realism. These hierarchies usually have a number of distinct
levels of detail, usually5 to 10, for a given object. At run time, the perceptual importance of a
given object in the scene is used to select its appropriate level of representation from the hierarchy
[9, 11, 12, 16, 30, 28]. Thus, higher detail representations are used when the object is perceptually
more important and lower detail representations are used when the object is perceptually less sig-
nificant. Transitions from one level of detail to the next are typically based on simple image-space
metrics such as the ratio of the image-space area of the object (usually implemented by using the
projected area of the bounding box of the object) to the distance of the object from the viewer.

Previous work, as outlined above, is well-suited for virtual reality walkthroughs and flythroughs
of large and complex structures with several thousands of objects. Examples of such environments
include architectural buildings, airplane and submarine interiors, and factory layouts. However, for
scientific visualization applications where the goal often is to visualize one or two highly detailed
objects at close range, most of the previous work is not directly applicable. For instance, consider
a biochemist visualizing the surface of a molecule or a physician inspecting the iso-surface of a
human head extracted from a volume dataset. It is very likely during such a visualization session,
that the object being visualized will not move adequately far away from the viewer to allow the
rendering algorithm to switch to a lower level of detail. What is desirable in such a scenario is an



algorithm that can allow several different levels of details to co-exist across different regions of the
same object. Such a scheme needs to satisfy the following two important criteria:

� It should be possible to select the appropriate levels of detail across different regions of the
same object in real time.

� Different levels of detail in different regions across an object should merge seamlessly with
one another without introducing any cracks and other discontinuities.

In this paper we present a general scheme that can construct such seamless and adaptive level-
of-detail representations on-the-fly for polygonal objects. Since these representations are view-
dependent, they take advantage of view-dependent illumination, visibility, and frame-to-frame
coherence to maximize visual realism and minimize the time taken to construct and draw such
objects. Our approach shows how one can adaptively define such levels of detail based on (a)
scalar attributes such as distance from the viewpoint and (b) vector attributes such as the direction
of vertex normals. An example using our approach is shown in Figure 1.

2 Previous Work

Adaptive levels of detail have been used in terrains by Grosset al [19] by using a wavelet decompo-
sition of the input data samples. They define wavelet space filters that allow changes to the quality
of the surface approximations in locally-defined regions. Thus, the level of detail around any re-
gion can adaptively refine in real-time. This work provides a very elegant solution for terrains and
other datasets that are defined on a regular grid.

Some of the previous work in the area of general surface simplification has addressed the is-
sue of adaptive approximation of general polygonal objects. Turk [35] and Hamann [21] have
proposed curvature-guided adaptive simplification with lesser simplification in the areas of higher
surface curvature. In [36, 10], adaptive surface approximation is proposed with different amounts
of approximation over different regions of the object. Gu´eziec [20] proposes adaptive approxima-
tion by changing the tolerance volume in different regions of the object. However in all of these
cases, once the level of approximation has been fixed for a given region of the object, a discrete
level of detail corresponding to such an approximation is statically generated. No methods have
been proposed there that allow free intermixing of different levels of detail across an object in real
time in response to changing viewing directions.

Work on surface simplification using wavelets [14, 15] and progressive meshes [25] goes a step
further. These methods produce a continuous level-of-detail representation for an object in contrast
to a set of discrete number of levels of detail. In particular, Hoppe [25] outlines a method for
selective refinement – i.e. refinement of a particular region of the object based upon view frustum,
silhouette edges, and projected screen-space area of the faces. Since the work on progressive
meshes by Hoppe [25] is somewhat similar to our work we overview his method next and discuss
how our method extends it.

Progressive meshes offer an elegant solution for a continuous resolution representation of
polygonal meshes. A polygonal mesĥM = Mk is simplified into successively coarser meshes
M i by applying a sequence of edge collapses. An edge collapse transformation and its dual, the
vertex split transformation, is shown in Figure 2.



(a) Sphere with 8192 triangles (uniform LOD)

(b) Sphere with 512 triangles (uniform LOD)

(c) Sphere with 537 triangles (adaptive LOD)

Figure 1: Uniform and adaptive levels of detail

Thus, a sequence ofk successive edge collapse transformations yields a sequence of succes-
sively simpler meshes:

Mk collapsek�1
! Mk�1 collapsek�2

! : : :M1 collapse0! M0 (1)

We can retrieve the successively higher detail meshes from the simplest meshM0 by using a
sequence of vertex-split transformations that are dual to the corresponding edge collapse transfor-
mations:

M0 split0! M1 split1! : : :Mk�1 splitk�1
! (M̂ = Mk) (2)

Hoppe [25] refers to(M0; fsplit0; split1; : : : ; splitk�1g) as aprogressive meshrepresentation.
Progressive meshes present a novel approach to storing, rendering, and transmitting meshes by us-
ing a continuous-resolution representation. However we feel that there is some room for improve-
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ment in adapting them for performing selective refinement in an efficient manner. In particular,
following issues have not yet been addressed by progressive meshes:

� The sequence of edge collapses is aimed at providing good approximationsM i to (M̂ =
Mk). However, if a sequence of meshesM i are good approximations tôM under some
distance metric, it does not necessarily mean that they also provide a “good” sequence of
edge collapse transformations for selective refinement. Let us consider a two-dimensional
analogy of a simple polygon as shown in Figure 3. Assume that verticesv0; v6; v7; and
v8 are “important” vertices (under say some perceptual criteria) and can not be deleted.
An approach that generates approximations based on minimizing distances to the original
polygon will collapse vertices in the orderv1 ! v2; v2 ! v3; v3 ! v4; v4 ! v5; v5 ! v6
to get a coarse polygon(v0; v6; v7; v8). Then if selective refinement is desired around vertex
v1, verticesv6; v5; v4; v3; v2 will need to be split in that order before one can get to vertex
v1. An approach that was more oriented towards selective refinement might have collapsed
v1 ! v2; v3 ! v4; v5 ! v6; v2 ! v4; v4 ! v6 for better adaptive results, even though the
successive approximations are not as good as the previous ones under the distance metric.

� Since the edge collapses are defined in a linear sequence, the total number of child links to
be traversed before reaching the desired node isO(n).

� No efficient method for incrementally updating the selective refinements from one frame to
the next is given. The reverse problem of selective refinement – selective simplification too
is not dealt with.

In this paper we provide a solution to the above issues with the aim of performing real-time
adaptive simplifications and refinements. We define a criterion for performing edge collapses that
permits adaptive refinement around any vertex. Instead of constructing a series of sequential edge
collapses we construct amerge treeover the vertices of mesĥM so that one can reach any child
vertex inO(log n) links. We then describe how one can perform incremental updates within this
tree to exploit frame-to-framecoherence, view-dependent illumination, and visibility computations
using both scalar and vector attributes.
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3 Simplification with Image-Space Feedback

Level-of-detail-based rendering has thus far emphasized object-space simplifications with minimal
feedback from the image space. The feedback from the image space has been in the form of very
crude heuristics such as the ratio of the screen-space area of the bounding box of the object to
the distance of the object from the viewer. As a result, one witnesses coarse image-space artifacts
such as the distracting “popping” effect when the object representation changes from one level
of detail to the next [23]. Attempts such as alpha-blending between the old and the new levels
of detail during such transitions serve to minimize the distraction at the cost of rendering two
representations. However alpha blending is not the solution to this problem since it does not
address the real cause – lack of sufficient image-space feedback to select the appropriate local
level of detail in the object space; it merely tries to cover-up the distracting artifacts.

Increasing the feedback from the image space allows one to make better choices regarding the
level of detail selection in the object-space. We next outline some of the ways in which image-
space feedback can influence the level of detail selection in the object-space.

3.1 Local Illumination

Increasing detail in a direction perpendicular to, and proportional to, the illumination gradient
across the surface is a good heuristic [2]. This allows one to have more detail in the regions
where the illumination changes sharply and therefore one can represent the highlights and the
sharp shadows well. Since surface normals play an important role in local illumination one can
take advantage of the coherence in the surface normals to build a hierarchy over a continuous
resolution model that allows one to capture the local illumination effects well. We outline in
Section 4.3 how one can build such a hierarchy.



3.2 Screen-Space Projections

Decision to keep or collapse an edge should depend upon the length of its screen-space projection
instead of its object-space length. At a first glance this might seem very hard to accomplish in
real-time since this could mean checking for the projected lengths of all edges at every frame.
However, usually there is a significant coherence in the ratio of the image-space length to the
object-space length of edges across the surface of an object and from one frame to the next. This
makes it possible to take advantage of a hierarchy built upon the the object-space edge lengths for
an object. We use an approximation to the screen-space projected edge length that is computed
from the object-space edge length. We outline in Section 4.2 how one can build such a hierarchy.

3.3 Visibility Culling

During interactive display of any model there is usually a significant coherence between the visible
regions from one frame to the next. This is especially true of the back-facing polygons that account
for almost half the total number of polygons and do not contribute anything to the visual realism.
A hierarchy over a continuous resolution representation of an object allows one to significantly
simplify the invisible regions of an object, especially the back-facing ones. This view-dependent
visibility culling can be implemented in a straightforward manner using the hierarchy on vertex
normals discussed in Section 4.3.

3.4 Silhouette boundaries

Silhouettes play a very important role in perception of detail. Screen-space projected lengths
of silhouette edges (i.e., edges for which one of the adjacent triangles is visible and the other
is invisible), can be used to very precisely quantify the amount of smoothness of the silhouette
boundaries. A hierarchy built upon a continuous-resolution representation of a object allows one
to do this efficiently.

4 Construction of Merge Tree

We would like to create a hierarchy that provides us a continuous-resolution representation of an
object and allows us to perform real-time adaptive simplifications over the surface of an object
based upon the image-space feedback mechanisms mentioned in Section 3. Towards this end we
implement amerge treeover the vertices of the original model. In our current implementation, the
merge tree stores the edge collapses in a hierarchical manner. However, as we discuss in Section 7
the concept of a merge tree is a very general one and it can be used with other local simplification
approaches as well. Note that the merge tree construction is done as an off-line preprocessing step
before the interactive visualization.

4.1 Basic Approach

In Figure 2, the vertexc is merged with the vertexp as a result of collapsing the edge(pc). Con-
versely, during a vertex split the vertexc is created from the vertexp. We shall henceforth refer to



c as the child vertex of the parent vertexp. The merge tree is constructed upwards from the high-
detail meshM̂ to a low-detail meshM0 by storing these parent-child relationships in a hierarchical
manner over the surface of an object.

At each levell of the tree we determine parent-child relationships amongst as many vertices at
level l as possible. In other words, we try to determine all vertices that can be safely merged based
on criterion defined in Section 4.4. The vertices that are determined to be the children remain at
levell and all the other vertices at levell are promoted to levell+1. Note that the vertices promoted
to levell+1 are a proper superset of the parents of the children left behind at levell. This is because
there are vertices at levell that are neither parents nor children. We discuss this in greater detail in
the context ofregions of influencelater in this section. We apply the above procedure recursively
at every level until either (a) we are left with a user-specified minimum number of vertices, or
(b) we cannot establish any parent-child relationships amongst the vertices at a given level. Case
(b) can arise because in determining a parent-child relationship we are essentially collapsing an
edge and not all edge collapses are considered legal. For a detailed discussion on legality of edge
collapses the interested reader can refer to [26]. Since in an edge collapse only one vertex merges
with another, our merge tree is currently implemented as a binary tree.

To construct a balanced merge tree we note that the effects of an edge collapse are local. Let
us define theregion of influenceof an edge(v0; v1) to be the union of triangles that are adjacent to
eitherv0 or v1 or both. The region of influence of an edge is the set of triangles that can change
as an edge is gradually collapsed to a vertex, for example, in a morphing. Thus, in Figure 2 as
vertexc merges to vertexp, (or p splits toc), the changes to the mesh are all limited to within the
region of influence of edge(pc) enclosed byn0; n1; : : : n6. Note that all the triangles in region of
influence will change if verticesp andc are merged to form an intermediate vertex, say(p + c)=2.
In our current implementation, the position of the intermediate vertex is the same as the position
of the parent vertexp. However our data-structures can support other values of the intermediate
vertex too. Such values could be used, for example, in creating intermediate morphs between two
level-of-detail representations.

To create a reasonably balanced merge tree we try to collapse as many edges as possible at
each level such that there are no common triangles in their respective regions of influence. Since
this step involves only local checks, we can accomplish this step in time linear in the number
of triangles at this level. If we assume that the average degree (i.e. the number of neighboring
triangles) of a vertex is6, we can expect the number of triangles in an edge’s region of influence to
be10. After the collapse this number of triangles reduces to8. Thus the number of triangles can
be expected to reduce roughly by a factor of4=5 from a higher-detail level to a lower-detail level.
Thus, in an ideal situation, the total time to build the tree will be given byn+ 4n

5
+ 16n

25
+: : : = O(n).

However, this assumes that we arbitrarily choose the edges to be collapsed. A better alternative
is to sort the edges by their edge lengths and collapse the shortest edges first. Collapsing an edge
causes the neighboring edges to change their lengths. However as mentioned above, since changes
are local we can maintain the sorted edge lengths in a heap for efficient updates. With this strategy
one can build the merge tree in timeO(n log n).



4.2 Scalar Subtree Attributes

To allow real-time refinement and simplification we can store at every parent node (i.e. a node that
splits off a child vertex) of the merge tree, a range of scalar attributes of the children in the subtree
below it. Then image-space feedback can be used to determine if this range of scalar attributes
merits a refinement of this node or not. We explain this process of incremental refinement and
simplification in greater details in Section 5.1.

In our current implementation every merge tree nodev stores the Euclidean distances to its
child and parent that determine whenv’s child will merge intov and whenv will merge into its
parent. The former is called thedownswitch distanceand the latter is called theupswitch distance.
These distances are built up during the merge tree creation stage. If the maximum possible screen-
space projection of the downswitch distance at the vertexv in the object space is greater than some
pre-set threshold, we permit refinement atv. However, if the maximum possible screen-space
projection of the upswitch distance atv in the object space is less than the threshold, it means that
this region occupies very little screen space and can be simplified.

4.3 Vector Subtree Attributes

Our implementation also allows incremental simplification and refinement based upon the coher-
ences of the surface normals. This allows us to implement view-dependent real-time simplifica-
tions based on local illumination and visibility. The regions with low intensity gradients are drawn
in lower detail, while the regions with high intensity gradients are drawn in higher detail. Similarly,
regions of the object that are back-facing are drawn at a much lower detail then the front-facing
regions.

Figure 4: Bounding cone for normal vectors

Since we are using frame-to-frame coherences in computing the levels of detail we need to
adopt a data-structure that represents the variation in the normal vectors amongst all the descen-
dents of any given vertex. To identify a possible representation, let us consider the idea behind
a Gauss map. A Gauss map is a mapping of the unit normals to the corresponding points on the
surface of a unit sphere. Thus, all the normal variations in a subtree will be represented by a closed
and connected region on the surface of a sphere using a Gauss map. To simplify the computations
involved, we have decided to approximate such regions by circles on the surface of the unit sphere,



i.e. bounding cones containing all the subtree normal vectors. This is demonstrated in Figure 4
where the normal vectors in the surface shown on the left are contained within the cone (i.e. a
circle on the Gauss map) on the right.

At the leaf-level, each vertex is associated with a normal-cone whose axis is given by its normal
vector and whose angle is zero. As two vertices merge, the cones of the child and parent vertices
are combined into a new normal cone that belongs to the parent vertex at the higher level. The idea
behind this merging of cones is shown in Figure 5.

b)Merged Parent Conea) Child Cones

Figure 5: Cone merging

4.4 Merge Tree Dependencies

By using techniques outlined in Section 5.1, one can determine which subset of vertices is sufficient
to reconstruct an adaptive level-of-detail for a given object. However, it is not simple to define a
triangulation over these vertices and guarantee that the triangulation will not “fold back” on itself
or otherwise represent a non-manifold surface (even when the original was not so). Figure 6 shows
an example of how an undesirable folding in the adaptive mesh can arise even though all the edge
collapses that were determined statically were correct.A shows the initial state of the mesh. While
constructing the merge tree, we first collapsed vertexv2 to v1 to get meshB and then collapsed
vertexv3 to v4 to get meshC. Now suppose at run-time we determined that we needed to display
verticesv1; v2, andv4 and could possibly collapse vertexv3 to v4. However, if we collapsev3 to v4
directly, as in mesh D, we get a mesh fold where there should have been none. One could devise
elaborate procedures for checking and preventing such mesh fold-overs at run-time. However, such
checks involve several floating-point operations and are too expensive to be performed on-the-fly.

To solve the above problem we introduce the notion of dependencies amongst the nodes of
a merge tree. Thus, the collapse of an edgee is permitted only when all the vertices defining
the boundary of the region of influence of the edgee exist and are adjacent to the edgee. As an
example, consider Figure 2. Vertexc can merge with vertexp only when the verticesn0; n1; : : : ; nk

exist and are adjacent top andc. From this we determine the following edge collapse dependencies,
restricting the level difference between adjacent vertices:

1. c can collapse top, only whenn0, n1, . . . ,nk are present as neighbors ofp andc for display.
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Figure 6: Mesh folding problem

2. n0; n1; : : : ; nk can not merge with other vertices, unlessc first merges withp.

Similarly, to make a safe split fromp to p and c, we determine the following vertex split
dependency:

1. p can split toc andp, only whenn0; n1; : : : ; nk are present as neighbors ofp for display.

2. n0; n1; : : : ; nk can not split, unlessp first splits top andc.

The above dependencies are followed during each vertex-split or edge collapse during real-
time simplification. These dependencies are easily identified and stored in the merge tree during
its creation. Considering Figure 6 again, we can now see that collapse of vertexv3 to v4 depends
upon the adjacency of vertexv1 to v3. If vertexv2 is present thenv1 will not be adjacent tov3 and
thereforev3 will not collapse tov4. Although having dependencies might sometimes give lesser
simplification than otherwise, it does have the advantage of eliminating the expensive floating-point
run-time checks entirely. The basic idea behind merge tree dependencies has a strong resemblance
to creatingbalanced subdivisionsof quad-trees as presented by Baumet al in [3] where only a
gradual change is permitted from regions of high simplifications to low simplifications. Details of
how these merge tree dependencies are used during run-time are given in Section 5.1.

The pseudocode outlining the data-structure for a merge tree node is given in Figure 7. The
pseudocode for building and traversing the merge tree is given in Figure 8. We are representing
the triangular mesh by the winged-edge data-structure to maintain the adjacency information.



struct NODE {
struct VERTEX *vert ; /* associated vertex */
struct NODE *parent ; /* parent node for merging */
struct NODE *child[2] ; /* child nodes for refinement */
float upswitch ; /* threshold to merge */
float downswitch; /* threshold to refine */
struct CONE *cone ; /* range of subtree normals */
struct VERTEX **adj_vert ; /* adjacent vertices */
int adj_num ; /* number of adjacent vertices */
struct VERTEX **depend_vert;/* dependency list for merge */
int depend_num ;/* number of vertices in the */

}; /* dependency list */

Figure 7: Data-structure for a merge tree node

5 Real-Time Triangulation

Once the merge tree with dependencies has been constructed off-line it is easy to construct an
adaptive level-of-detail mesh representation at run-time. Real-time adaptive mesh reconstruction
involves two phases – determination of vertices that will be needed for reconstruction and deter-
mination of the triangulation amongst them. We shall refer to the vertices selected for display at
a given frame asdisplay verticesand triangles for display asdisplay triangles. The phases for
determination of display vertices and triangles are discussed next.

5.1 Determination of display vertices

In this section we outline how we determine the display vertices using the scalar and vector attribute
ranges stored with the nodes of the merge tree. We first determine theprimary display vertices
using the screen-space projections and the normal vector cones associated with merge tree nodes.
These are the only vertices that would be displayed if there were no triangulation constraints or
mesh-folding problems. Next, from these primary display vertices we determine thesecondary
display verticesthat are the vertices that need to be displayed due to merge tree dependencies to
avoid the mesh fold-overs in run-time triangulations.

5.1.1 Primary Display Vertices

Screen-Space Projection
As mentioned earlier, every merge tree nodev stores a Euclidean distance for splitting a vertex

to its child (downswitch distance) as well as the distance at which it will merge to its parent
(upswitch distance). If the maximum possible screen-space projection of the downswitch distance
at the vertexv in the object space is greater than some pre-set thresholdT , we permit refinement
at v and recursively check the children ofv. However, if the maximum possible screen-space
projection of the upswitch distance atv in the object space is less than the thresholdT , it means



/* Given a mesh, build_mergetree() constructs a list of merge trees - one
* for every vertex at the coarsest level of detail.
*/

build_mergetree(struct MESH *mesh, struct NODE **roots)
{ struct HEAP *current_heap, *next_heap ;

int level ;

current_heap = InitHeap(mesh);
next_heap = InitHeap(nil) ;
for ( level = 0 ; HeapSize(current_heap) > MIN_RESOLUTION_SIZE; level ++ )
{ while ( HeapSize(current_heap) > 0 )

{ edge = ExtractMinEdge(current_heap);
node = CreatNode(edge);
SetDependencies(node);
SetCone(node); /* Set vector attributes */
SetSwitchDistances(node); /* Set scalar attributes */
InsertHeap(next_heap, node);

}
FreeHeap(current_heap);
current_heap = next_heap ;
next_heap = InitHeap(nil);

}
FlattenHeap(roots, current_heap);

}

/* Given a list of nodes of the merge tree that were active in the previous
* frame, traverse_mergetree() constructs a list of new merge tree nodes by
* either refining or simplifying each of the active merge tree nodes.
*/

traverse_mergetree(struct NODE **current_list,
struct VIEW view, struct LIGHTS *lights )

{ int switch ;

for each node in current_list do
{ switch = EvalSwitch(node, view, lights);

if ( switch == REFINE )
RefineNode(node);

else if ( switch == SIMPLIFY )
MergeNode(node);

}
}

Figure 8: Pseudocode for building and traversing the merge tree



that this region occupies very little screen space and can be simplified, so we markv as inactive
for display.
Normal Vectors

We need to determine the direction and the extent of the normal vector orientation within the
subtree rooted at a display vertex, with respect to the viewing direction as well as light source, to
accomplish view-dependent local illumination and visibility-based culling.

To determine silhouettes and the back-facing regions of an object, we check to see if the normal
vector cone at a vertex lies entirely in a direction away from the viewer. If so, this vertex can be
marked inactive for display. If not, this vertex is a display vertex and is a candidate for further
refinement based on other criteria such as screen-space projection, illumination gradient, and sil-
houette smoothness. In such a case we recursively check its children. The three possible cases are
shown in Figure 9.

Silhouette

Back-facing Front-facing

Figure 9: Selective refinement and simplification using normal cones

Similarly, for normal-based local illumination, such as Phong illumination, we use the range
of the reflection vectors and determine whether they contain the view direction or not to determine
whether to simplify or refine a given node of the merge tree.

We follow the procedures outlined above to select all those vertices for display that either (a)
are leaf nodes and none of their parents have been marked as inactive, or (b) have their immediate
child marked as inactive. This determines the list of primary display vertices.

5.1.2 Secondary Display Vertices

We follow the merge dependencies from the list of primary display vertices to select the final set
of display vertices in the following manner. If a vertexv is in the initial list of display vertices and
for it to be created (via a vertex split), the verticesvd0; vd1; : : : ; vdk had to be present, we add the
verticesvd0 ; vd1; : : : ; vdk to the list of display vertices and recursively consider their dependencies.
We continue this process until no new vertices are added.

When determining the vertices for display in framei+1 we start from the vertex list for display
used in framei. We have found a substantial frame-to-frame coherence and the vertex display list
does not change substantially from one frame to the next. There are minor local changes in the
display list on account of vertices either refining or merging with other vertices. These are easily
captured by either traversing the merge tree up or down from the current vertex position. The



scalar and vector attribute ranges stored in merge tree nodes can be used to guide refinements if the
difference in the display vertex lists from one frame to the next becomes non-local for any reason.
We compute the list of display vertices for first frame by initializing the list of display vertices for
frame0 to be all the vertices in the model and then proceeding as above.

5.2 Determination of display triangles

If the display triangles for framei are known, determination of the display triangles for frame
i+ 1 proceeds in an interleaved fashion with the determination of display vertices for framei+ 1

from framei. Every time a display vertex of framei merges in framei+ 1 we simply delete and
add appropriate triangles to the list of display triangles as shown in Figure 10. The case where a
display vertex in framei splits for framei+ 1 is handled analogously. Incremental determination
of display triangles in this manner is possible because of the dependency conditions mentioned in
Section 4.4. The list of display triangles for the first frame is obtained by initializing the list for
frame0 to be all the triangles in the model and then following the above procedure.
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-
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Figure 10: Display triangle determination

6 Results and Discussion

We have tried our implementation on several large triangulated models and have achieved encour-
aging results. These are summarized in Table 1 The images of teapot, bunny, crambin, phone,
sphere, buddha, and dragon models that were produced for the times in Table 1 are shown in Fig-
ures 1, 11, 13, and 14 respectively. All of these timings are in milliseconds on a Silicon Graphics
Onyx with RE2 graphics, a 194MHz R10000 processor, and 640MB RAM. It is easy to see that
the time to traverse the merge tree and construct the list of triangles to be displayed from frame to
frame is relatively small. This is because of our incremental computations that exploit image-space,
object-space, and frame-to-frame coherences. The above times hold as the user moves through the
model or moves the lights around. The triangulation of the model changes dynamically to track
the highlights as well as the screen-space projections of the faces.

As can be seen from the merge tree depths, the trees are not perfectly balanced. However, they
are still within a small factor of the optimal depths. This factor is the price that has to be paid



Highest detail Crambin surface Simplified Crambin surface

Highest detail Bunny Simplified Bunny

Highest detail Teapot Simplified Teapot

Highest detail Phone Simplified Phone

Figure 11: Dynamic adaptive simplification



Highest detail model – bottom light source

Dynamic adaptive simplification – top light source

Dynamic adaptive simplification – top light source

Figure 12: Dynamic adaptive simplification for the head of the Dragon



Highest detail Simplified

Figure 13: Dynamic adaptive simplification for the Buddha

Highest detail Simplified

Figure 14: Dynamic adaptive simplification for the Dragon



Highest Detail Adaptive Detail Reduction Ratio

Dataset Display Display Display Tree Traverse Display Total Display Display

Tris Time Tris Levels Tree Time Time Tris Time

Teapot 3751 57 1203 36 10 17 27 32.0% 47.3 %

Sphere 8192 115 994 42 8 16 24 12.1% 20.8 %

Bunny 69451 1189 13696 65 157 128 285 19.7% 23.9 %

Crambin 109884 1832 19360 61 160 194 354 17.6% 19.3 %

Phone 165963 2629 14914 63 112 144 256 8.9 % 9.7 %

Dragon 202520 3248 49771 66 447 394 842 24.5% 25.9 %

Buddha 293232 4618 68173 69 681 546 1227 23.2% 26.5 %

Table 1: Adaptive level of detail generation times

to incorporate dependencies and avoid the expensive run-time floating-point checks for ensuring
good triangulations. For each dataset, we continued the merge tree construction till8 or fewer
vertices were left. As expected, the factor by which the number of vertices decreases from one
level to the next tapers off as we reach lower-detail levels since there are now fewer alternatives
left to counter the remaining dependency constraints. As an example, for sphere, only64 vertices
were present at level30 and it took another12 levels to bring down the number to8. If the tree
depth becomes a concern one can stop sooner, trading-off the tree traversal time for the display
time.

An interesting aspect of allowing dependencies in the merge tree is that one can now influence
the characteristics of the run-time triangulation based upon static edge-collapse decisions during
pre-processing. As an example, we have implemented avoidance of slivery (long and thin) triangles
in the run-time triangulation. As Gu´eziec [20], we quantify the quality of a triangle with areaa
and lengths of the three sidesl0; l1; andl2 based on the following formula:

Quality =
4
p
3a

l20 + l21 + l22
(3)

Using Equation 3 the quality of a degenerate triangle evaluates to0 and that of an equilateral
triangle to1. We classify all edge collapses that result in slivery triangles to be invalid, trading-off
quantity (amount of simplification) for quality.

One of the advantages of using normal cones for back-face simplification and silhouette defi-
nition is that it allows the graphics to focus more on the regions of the object that are perceptually
more important. Thus, for instance, for generating the given image of the molecule crambin, 8729
front-facing vertices were traversed as compared to 3361 backfacing vertices; 1372 were classified
as silhouette vertices. Similarly, for the model of phone, our approach traversed 6552 front-facing
vertices compared to only 1300 backfacing vertices; 900 were classified as silhouette vertices.

Clearly, there is a tradeoff here between image-quality and amount of simplification achieved.
The results for our simplifications given in this section correspond to the images that we thought
were comparable to the images from the original highest detail models. Higher levels of simplifi-
cations (that are faster to incrementally compute and display) with correspondingly lower quality



images are obviously possible, allowing easy implementations of progressive refinement for dis-
play.

7 Conclusions and Future Work

We have outlined a simple approach to maintain dynamically adaptive level of detail triangulations.
Crucial to this approach is the notion of merge trees that are computed statically and are used
during run-time to take advantage of the incremental changes in the triangulation. In our current
implementation we are using the method of edge collapses. However the idea behind merge trees
is pretty general and can be used in conjunction with other local heuristics for simplification such
as vertex deletion and vertex collapsing. We plan to study some of these other heuristics in the
future and compare them with our current implementation that uses edge collapses.

At present we do not store color ranges at the nodes of the merge tree. Storing and using these
should improve the quality of the visualizations produced using merge trees even further. Also of
some interest will be techniques that create better balanced merge trees while still incorporating
dependencies. We plan to investigate these issues further.

Of course, our approach also makes dynamically-specified manual simplifications possible,
where the user can interactively specify the amounts of approximation desired at various regions
of the object. Using this, certain parts of the object can be rendered at lower or higher details than
otherwise. However, in this paper we have only considered automatic object simplifications during
interactive display.
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Abstract

We propose the idea of using variable-precision geometry transfor-
mations and lighting to accelerate 3D graphics rendering. Multires-
olution approaches reduce thenumberof primitives to be rendered;
our approach complements the multiresolution techniques as it re-
duces theprecisionof each graphics primitive. Our method relates
the minimum number of bits of accuracy required in the input data
to achieve a desired accuracy in the display output. We achieve
speedup by taking advantage of (a) SIMD parallelism for arith-
metic operations, now increasingly common on modern processors,
and (b) spatial-temporal coherence in frame-to-frame transforma-
tions and lighting. We show the results of our method on datasets
from several application domains including laser-scanned, proce-
dural, and mechanical CAD datasets.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Hierarchy and
geometric transformations; I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques—Graphics data structures and data types.

Additional Keywords: hierarchical rendering, levels of detail,
variable-precision rendering, view-dependent rendering.

1 Introduction

As the complexity of visualization datasets has increased beyond
the interactive rendering capabilities of the graphics hardware, re-
search in graphics acceleration has engendered several novel tech-
niques that reconcile the conflicting goals of scene realism and in-
teractivity. These techniques can be broadly classified into two lines
of research. The first line of research includes techniques such as
multiresolution rendering and visibility-based culling. Such tech-
niques operate by reducing the number of graphics primitives to be
rendered based on viewing and illumination parameters, such that
there are minimal visually discernible differences between view-
ing higher complexity and lower complexity scenes. Orthogonal to
these advances, we have been witnessing another line of research
whose goal is to reduce the precision of each graphics primitive

(a) Floating Point (b) Variable Precision
(32 bits/vertex coordinate) (Average 7.6 bits/vertex coordinate)

Figure 1: Variable Precision Rendering

being rendered. Recently, reduction in precision of the object prop-
erties such as colors [11, 33], normals [7, 34], and vertex coordi-
nates [16, 17] has been successfully attempted. The contribution of
this paper lies in merging these two lines of research for variable-
precision, view-dependent rendering.

Most transformations and lighting for graphics primitives are
currently carried out at full floating-point precision only to be
later converted to fixed-point representation during the rasteriza-
tion phase. An argument can be made that such high accuracy dur-
ing geometry transformation and lighting stage sometimes exceeds
even the display accuracy and thus causes several bits worth of un-
necessary precision computation. We are currently witnessing four
important trends in 3D graphics that have increased the need for
variable-precision rendering:

1. View-dependent Rendering:View-dependent rendering has
already introduced the concept of rendering different regions of a
scene at varying geometric, illumination, and texture detail [14, 18,
32] based on their perceptual significance. A natural extension of
this approach is to render each object at the precision appropriate
for it. Under a perspective projection, objects that are close to the
observer need more bits of precision than objects that are far.

2. Bounded Dynamic Range: Most graphics datasets have
limited dynamic range. For instance, biomolecular datasets such
as protein structures are determined using X-ray crystallography,
NMR experiments, and gel electrophoresis. All of these methods
have their accuracy limitations. Bounded input data accuracy with
limited dynamic range also occurs in volumetric, range, and image-
based datasets. Even in CAD datasets, the accuracy of the model is
often limited by numeric round-off errors during intersection com-
putations and precision limitations of acquisition methods which
are greater than one in a million [21].

3. Processor-Level Support: With rapid growth in the size
of the 3D datasets, geometry processing (transformation and light-
ing) has become a significant computational component of the 3D
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graphics pipeline. To partly alleviate such computations in graph-
ics and image processing, a variety of matrix math extensions to
the CPU instruction sets have emerged: Intel’s Pentium II with
MMX and Pentium III with SSE, AMD’s K6/Athlon with 3DNow!,
and the Motorola PowerPC G4 with AltiVec. All of these in-
struction sets take advantage of SIMD (single-instruction multiple-
data) parallel execution of instructions [12]. For instance, the Intel
MMX [22] allows variable precision integer arithmetic to be im-
plemented in SIMD parallelism where either two32-bit, four 16-
bit or eight8-bit integer values are operated on in parallel. Such
processor-level support for variable-precision arithmetic has en-
abled efficient implementation for variable-precision rendering.

4. Geometry Bandwidth Bottleneck: Increase in the geometric
complexity of the graphics datasets has far outpaced the increase in
the display complexity. This has resulted in a bottleneck in trans-
ferring 3D vertex data from the geometry processor to the graph-
ics processor. More recently, graphics architectures such as the
NVIDIA’s GeForce 2TM and S3’s Savage 2000TM , have emerged
that perform transformation, lighting, and rasterization on the same
chip. This has further shifted the bottleneck in the graphics pipeline
from processing to bandwidth to and from the graphics chip. If the
variable-precision rendering techniques discussed in this paper are
adopted in a graphics API and/or implemented on the chip itself (in
a manner similar to the MMX technology), this could significantly
reduce the bus traffic to the graphics chip and accelerate the trasfor-
mation and lighting stages on the graphics chip beyond the results
reported in this paper.

In this paper we lay down the mathematical groundwork for per-
forming variable-precision geometry transformations and lighting
for 3D graphics. In particular, we explore the relationship between
the distance of a given sample from the viewpoint, its location in
the view-frustum, to the required accuracy with which it needs to be
transformed and lighted to yield a given screen-space error bound.
The main contributions of this paper are:

1. We show how variable-precision transformations and lighting
(at arbitrary precisions, not just32 and16 bits) can speed up
general 3D transformations, parallel and perspective, and re-
sult in more efficient lighting.

2. We present a careful error analysis to relate the number of bits
of input precision required for a given display accuracy.

3. We study how variable-precision operations can be used with
spatial and temporal coherences.

2 Previous and Related Work

In computational geometry and solid modeling, research has been
done on performing robust geometric operations. Exact rational
arithmetic (i.e. in homogeneous coordinates) has been found to ad-
dress several shortcomings of the conventional floating-point arith-
metic [13]. However, successive geometric operations can result
in an unbounded growth in the precision required to accurately
compute the result. One way to limit the growth of the required
precision is to intersperse rounding between arithmetic operations.
Rounding-off vertex coordinates (or even line and plane coeffi-
cients [13, 28]) is reasonably well-understood now. However, such
rounding is much more difficult if it must preserve some com-
binatorial or topological structure amongst the primitives (in/out,
above/below, clockwise/counterclockwise orientation etc.). Several
sophisticated approaches have been proposed that perform round-
ing and preserve some of these relationships by adding some extra
points [8] or re-adjusting the rounded-off numbers to approximately
maintain the relationships [19]. In a number of cases, such results

are used only to establish topological relationships amongst primi-
tives. This can be efficiently done by using sufficiently accurate (as
opposed to exact) arithmetic [3, 9, 15].

Most of the research in graphics dealing with limiting the preci-
sion of vertex coordinates has focused on rounding-off the vertex
coordinates (perhaps with attributes) independently of the topolog-
ical structure defined by the vertices. Thus, with such approaches
it is possible that the lower-precision models suffer from artifacts
such as self-intersection and false incidences, even if the original
higher-precision models did not. In practice, such artifacts have not
been observed frequently enough yet, to convince most graphics
practitioners to adopt the more time-consuming algorithms to pre-
serve the topological structures. In this paper, we continue this line
of thinking and quantize the vertex coordinates independently of the
underlying topological constraints. Deering [7] has demonstrated
that quantizing the normals down to12 bits (i.e. only4K unique
normals) and vertex coordinates to24 bits results in only minimal
degradation in the rendered image quality. Reducing the precision
of the vertex coordinates is implicit in the work of Rossignac and
Borrel [27] and more recently, Luebke and Erikson [18]. The fo-
cus there is on reducing the geometric complexity of the high detail
models. Consequently, even though the resulting vertex coordinates
are effectively quantized on a grid and octree respectively, the re-
duced precision has not been taken advantage of during transforma-
tion and rendering.

Within the area of compression of 3D models, a lot of atten-
tion has been given to reducing the number of bits to represent
vertex coordinates. Most approaches have used multi-stage quanti-
zation with Huffman encoding of delta-differences between succes-
sive vertices [2, 4, 7, 17, 29, 30]. Recently, progressive compression
and transmission has been actively exploited [1, 6, 20, 21, 29]. Us-
ing the techniques of geometry prediction and progressive mesh en-
coding [1], combined with batch processing [6, 20] and entropy en-
coding [21], compression ratios for progressive compression have
started approaching those for single resolution compression. King
and Rossignac [16] have further balanced the reduction of the num-
ber of vertices and the reduction of bits per vertex coordinate using
a shape complexity measure. For a nice survey of 3D geometry
compression the interested reader may refer [2, 26]. Thus far, the
reduced number of bits for representing vertex coordinates have not
been used for speeding-up the rendering.

Researchers at Intel [22] have shown how to use the MMXTM

instruction-set to perform vector-matrix multiplies in short (16-bit)
precision to speed-up the parallel projection. Specifically, they
show how to perform four16-bit operations in parallel.

3 Precision and Complexity

Let us first note the difference between multi-resolution and
variable-precision rendering for 3D graphics models. Multi-
resolution hierarchies have traditionally involved modeling each
object at multiple levels of detail, where the detail is usually mea-
sured in the number of geometric primitives required for representa-
tion. Thus, a high-detail triangle-mesh object will require a higher
number of vertices, edges, and triangles for representation. This
complexity is largely independent of the precision at which each
vertex is being represented. As can be seen in Figure 2(b), a mul-
tiresolution technique can be used to identify howmanyprimitives
are necessary for a faithful representation of a given object with a
given set of viewing and lighting parameters. A variable-precision
technique provides bounds on the bits ofaccuracyper primitive
that are required for high-fidelity rendering. This can be seen in
Figure 2(c) where the points selected to represent the circle all fall
on the quantization grid. Thus, the two techniques are orthogonal
to each other and depending on the application requirements for
accuracy and speed can be used in a complementary manner.
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(a) (b) (c)

Figure 2: Varying Complexity versus Varying Precision

In the following analysis of different kinds of errors in geomet-
ric transformations, we shall assume that a minimum-sized cube
has been constructed to cover the whole object using an algorithm
similar to [10] and each axis has been normalized to the range of
[�1:0; 1:0]. Thus the operandsa andb aren-bit fixed-point rep-
resentations of floating-point quantities within[�1:0; 1:0]. Addi-
tionally, we assume that we computed then-bit fixed-point rep-
resentation from such normalized floating-point representation by
multiplying by 2n�1 and rounding to the nearest integer. Also, we
would like to point out that this paper performs a worst-case analy-
sis to guide the selection of appropriate precision. A good reference
for sources and propagation of numerical errors is [24].

3.1 Representation Error

Often input data has uncertainty. A recent standards report from
NIST outlines several types of uncertainty [31]. These include sta-
tistical (e.g., confidence intervals with mean and variance) and er-
ror (differences among estimates of the data from multiple sources
and/or multiple time instants) uncertainties. Such uncertainties of-
ten limit the data acquisition precision. Other sources of error in the
input data include approximations in the abstractions from which
data is derived, numerical errors in computing the data using lim-
ited precision arithmetic, as well as instabilities in the mathemati-
cal models (as in ill-conditioned systems). Such errors often limit
the number of bits of precision in the input dataset. For an-bit
fixed-point representation derived by rounding from a normalized
floating-point representation, the representation error is at most half
bit: "rep � 1

2

3.2 Addition Error

For adding twon-bit integers, the error arises from the propagated
error from the representation." = "

gen + "
prop = "

prop � 1
2
+

1
2

= 1: So we will lose at most one bit of accuracy due to each
addition.

3.3 Multiplication Error

We shall use2n bits to store the intermediate result of multipli-
cation of twon-bit integers. Since each normalized floating-point
operand was magnified by a factor of2n�1 during conversion to
fixed-point before multiplication, we need to take out that extra
2n�1 factor by right shifting the intermediate resultn � 1 bits.
Then-bit final result thus obtained has the largest error when both
multiplier and multiplicand are close to2n�1 and the absolute rep-

resentation error is1
2
: " �

1

2
�2n�1+ 1

2
�2n�1

2n�1
= 1. Thus, we lose

one bit of accuracy due to each multiplication.

3.4 Division Error

Per-vertex division happens during the transformation from homo-
geneous coordinate to 3D image-space coordinates. The propagated

error due to the division is:

"
prop

= " a
b

prop
=

����@(ab )@a

���� "a + ����@(ab )@b

���� "b = "a

b
+

a

b2
"b

Here,"a and"b are the representation errors ina andb and are each
at most1

2
. For vertex within the view volume, we havea � b. Also,

the generated error due to truncation is1. Thus:

" = "
gen

+ "
prop

= 1 +
1
2

b
+
a� 1

2

(b)2
� 1 +

1

b

Since in viewing transformations, the divisorb is the distance of
a scene vertex to eye in normalized view-volume representation
(where the distance of the farthest point is1:0),

" � 1 +
distance of far plane in view-volume from eye

distance of scene vertex from eye

So the loss of number of bits accuracy is�
log2(1 +

distance of far plane from eye
distance of scene vertex to eye

)

�

3.5 Putting it all together

For a 1024 � 1024 window, with pixel level accuracy, we need
10 bits in eachx and y to represent the position of a vertex on
the screen. Transformation of a vertex in homogeneous coordinates
with a4�4 matrix requires four multiplications and three additions
for each coordinate. The height of this operation tree is three (leaves
at level3 have four multiplies, level2 has two additions, and the
root at level1 has the final addition). Thus, we will lose3 bits
of accuracy in this matrix-vector multiplication. To getn bits of
accuracy after transformation and homogeneous division, we need
m bits to represent the input data:

m = n+ 3 +

�
log2(1 +

distance of far plane from eye
distance of scene vertex to eye

)

�
Thus, if the display window is1024 � 1024, n = 10 for pixel
level accuracy; and if the distance of the point being rendered is
half way across the view-volume, we shall need15 bits to represent
the vertex data:m = 10 + 3 + dlog2(1 + 2)e = 15. This can be
used to compute the requisite number of bits of precision required
for each vertex based on its distance from the eye and forms the
basis of view-dependent precision-based rendering.

For applications which require sub-pixel accuracy, we can in-
crease the window resolution in the above formula. For example,
if the application needs four bits of sub-pixel accuracy along each
dimension, then we add four more bits to the requirements, which
in the above example will result in a requirement of19 bits of ac-
curacy per input vertex coordinate for a1024 � 1024 window.

4 View-dependent Transformation

The formula from the last section gives the upper bound on the
number of bits needed to transform the vertices in order to getn bits
of accuracy. In reality, if the object projects to the screen in an area
that is small compared to the screen size, we may need less thann

bits to get window-resolution-level accuracy. For view-dependent
transformation, we have to find out the number of bits needed for
vertices at different locations.
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4.1 Octree-based Bounding Volume Hierarchy

To take advantage of the view-dependent information, we need an
efficient way to estimate the projected size of different parts of an
object. An octree bounding volume hierarchy is easy to build and
very efficient to get the bounding volume of the projected vertices.

The idea is to find the minimum and maximum number of bits re-
quired for each bounding box using equations in the following sub-
sections. If the two numbers are equal, then all vertices within this
box will need the same number of bits during the transformation.
Otherwise, vertices in this bounding box need different number of
bits, and we should recurse to the lower levels of the octree hier-
archy. In our implementation, we have used the normalized object
coordinates, i.e., allx, y, andz coordinates lie within[�1:0;+1:0].

4.2 Projected Size of the Dataset

For each view point, we calculate the projection of the eight corner
points of the root level bounding box. From these projected points,
we can find out the size of the object on the screen. The corner
points are transformed into parallel-projection canonical viewing
volume. The whole viewport will map into [�1:0;+1:0] in both x
and y direction of this viewing volume, so the relative size of the
projected object to screen is just half the range of these projected
corner points. During the calculation, we store the transformed
minimum and maximumW value (i.e., minimum and maximum
depth,Wmin andWmax) of these eight points for later usage. The
distance from the nearest visible scene vertex to view point is just
the bigger one ofWmin and near clipping plane.

4.3 Nearest Visible Vertex Accuracy

Given the width and height of the screen in number of pixels, the
number of bits for pixel-level accuracy is (if sub-pixel accuracy is
desired, just add those in):

n = screen bits = max(dlog2 widthe ; dlog2 heighte)

From last subsection, we know the ratio of the projected object size
to the screen size is the projected range divided by 2, so the bits
needed to represent the object will be

���log2( projected range
2

)
��� bits less

thanscreen bits.
Taking into account the computation error due to the multipli-

cation, addition, and division as mentioned in the last section, the
number of bits needed for the nearest visible scene vertex is:

near bits = n+ 3�
�����log2(projected range

2
)

�����+�
log2(1 +

distance of far plane from eye
distance of nearest vertex to eye

)

�

(a) Need 3 bits inx andy (b) Need 2 bits (and 1 bit of offset)

Figure 3: Object of Smaller Projected Size needs Less Precision

As shown in Figure 3, the smaller object in (b) only occupies less
than half of the screen in each dimension, so it will need one bit less
than the bigger object in (a). The extra screen offset will be added
in the final viewport transformation step.

4.4 Accuracy to Represent Each Vertex

Due to the perspective foreshortening, an object appears smaller as
its distance to the viewpoint increases. As an example, an object
at twice the distance will have half the size on the screen, and thus
needs one less bit to represent.

Generally, given thenear bits as defined before, we try to find
the number of bits for any other vertex. After the transformedW

value (i.e., depth) is known, we calculate the vertexbits as:

vertex bits = near bits��
log2(

transformedW of this vertex
distance of nearest vertex to eye

)

�
It will be expensive if we need to do this calculation for each vertex.
Fortunately, with the bounding box hierarchy, very few calculations
need to be done.

Starting from the top of the hierarchy, we calculate the minimum
and maximum transformedW value for that node. First we cal-
culate the transformedW value of the center of the node (denoted
asW 0

center), then we check the eight corner points of the node to
figure out the minimum and the maximum. As we already have
theWmin andWmax of the corner points at the root level, for the
subtree at levelk:

W
0
min = W

0
center +

Wmin

2k
and W

0
max = W

0
center +

Wmax

2k

where the denominator is due to the fact that the node size is re-
duced by a factor of two when we go down one level in the octree.

Using the above two equations, we can find out the minimum and
the maximum number of bits needed for vertices within the box:

Vmin = near bits�
�
log2(

W
0
max

distance of nearest vertex to eye
)

�

Vmax = near bits�
�
log2(

W
0
min

distance of nearest vertex to eye
)

�
If these two numbers are equal, then we know that all the vertices
within the box will need these number of bits to represent. Other-
wise, vertices in the box require different numbers of bits and we
need to recurse down one more level of the octree.

5 Spatio-Temporal Coherence

In the last two sections we have seen the relationship between the
input bits of accuracy and the bits of accuracy required for the out-
put. For the same number of bits of accuracy for the output, we can
further reduce the bits of accuracy required in the input by taking
advantage of spatial and temporal coherence. This can result in fur-
ther savings in processing time as well as in the bandwidth to the
graphics processor.

5.1 Spatial Coherence

The basic idea that we use to take advantage of the spatial coherence
is that the difference in spatially close vertices can usually be repre-
sented in far fewer bits than those required to represent each vertex
coordinate in its entirety. This idea has been used with great suc-
cess in the research on 3D compression of geometry as discussed in
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Section 2. If a vertex coordinatex0 can be represented by a delta-
difference with respect to another coordinatex asx0 = x + �x

then one can decompose the transformation for coordinatex
0 as:

Mx
0 = M(x+�x) = Mx+M�x

Since the number of bits of accuracy required to transform�x

is much smaller, one can perform several of them in parallel. To
exploit this idea, we can partition the dataset by any spatial sub-
division scheme such as an octree over the vertices of the model.
In our implementation we have used an octree that subdivides by
the volume centroid at each level. In this scheme, since each level
reduces the range by half, the vertices in each lower level require
one bit less than their parents. The accuracy of the transformation
of a vertex coordinate with a matrix is represented by the lower of
the two accuracies. Thus if the vertex coordinates can be quantized
in less bits, the transformation matrix values can also be quantized
with less number of bits.

In this approach we independently transform the delta difference
in the vertex coordinate position between the current level of the
octree and its parent. Then we can get the final transformed results
for each vertex by a top-down tree traversal as the following:
(LIMIT is the lowest level of tree below which the difference
between the transformed parent and children is negligible)

Top-Down-Tree-Traversal(x)

if x 6= NULL

if x:level � LIMIT

x:value = x:parent:value+ x:transform

for i from 1 to 8

Top-Down-Tree-Traversal(x:child(i))

else

x:value = x:parent:value

for i from 1 to 8

Top-Down-Tree-Traversal(x:child(i))

As an example, if we could operate on byte and short precision
operands and we required16 bits of accuracy, then we could trans-
form the top eight levels of the octree in short-precision and the
lower levels could be transformed in byte-precision (or even lesser,
if available). By using such hierarchical schemes, one can get a
better precision efficiency without losing accuracy. Figure 4 com-
pares the results of bunny model using floating point and variable-
precision transformation.

(a) Floating Point (b) Variable Precision
Transform Transform

(32 bits/vertex coordinate) (Average 7.9 bits/vertex coordinate)

Figure 4: Variable-Precision Transformation of Bunny Model
(Stanford model, 69K triangles; lighting for both images has been
calculated in floating point)

5.2 Temporal Coherence

Similar to the idea of spatial coherence, we can take advantage
of temporal coherence by noting that the difference in the trans-
formed vertex positions does not differ significantly from one frame
to the next. Thus if we calculate the difference in the trans-
formation matrix from one frame to the next and use the differ-
ence matrix�M to transform a vertex, we can then add it to
the previously transformed vertex position in less number of bits:
M

0
x = (M+�M)x = Mx+�Mx. Extending this idea further,

we note that one can combine the spatial and temporal coherences:
M

0
x
0 = (M+�M)(x+�x) = Mx+�Mx+M�x+�M�x

As we show in Tables 2 and 3 for the Auxiliary Machine Room
dataset, the average number of bits that are operated upon for each
vertex as well as the equivalent number of operations can both be
greatly reduced by taking advantage of both spatial and temporal
coherences.

6 Variable-Precision Lighting

Color is usually represented by8-bits of precision in red, green, and
blue components and sometimes even less (for instance in lower-
range graphics cards and Personal Digital Assistants). Also, if
depth cueing is turned on and the far objects are displayed at lower
intensities, their color can be represented using fewer bits.

Figure 5: Lighting Calculation

Before we go to the detailed treatment of the variable-precision
lighting, let us review the formula for the lighting calculation we
have used. Although there are good psychophysically-based light
reflection models [23], we decided to implement the OpenGL illu-
mination model. As in OpenGL, we assumed diffuse and Phong
illumination with Gouraud shading without per-pixel normal eval-
uation:

Color = emissionmaterial+ ambientlight model� ambientmaterial+

+

m�1X
i=0

(
1

kc + kld+ kqd
2
)i � (spotlight effect)i �

(Cambient+Cdiffuse+Cspecular)i

wherem is the number of light sources,( 1

kc+kld+kqd
2 ) gives the

attenuation factor in whichd is the distance between the vertex
and the local light source.Cambient = ambientlight�ambientmaterial;

Cdiffuse = (max f�!L � �!N; 0g)�diffuselight�diffusematerial and

Cspecular= (max f�!s ��!N; 0g)shin�specularlight�specularmaterial.
�!
L is

the unit vector that points from the vertex to the light position,
�!
N is

the unit normal vector at the vertex,�!s is the normalized half way
vector between the directions of the light source and the viewer, and
shinis the shininess, i.e., the specular exponent. Our goal here is to
find the necessary number of bits to represent the input illumination
data in order to get the required accuracy in output color.
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6.1 Sources of Error in Local Illumination

There are several additional sources of error in local illumination
computation beyond the sources of error we have already discussed
in the transformation stage (representation error, addition error,
multiplication error, and division error). In lighting computations
we have to deal with addition and multiplication errors for operands
with different bits of accuracy, the square root operation error which
results from vector normalization, and the error induced by expo-
nentiation in specular illumination. Also, the special case of dot
product of two unit vectors is worthy of separate analysis.

To reduce the error propagation, we can multiply the light co-
efficient with the object material property coefficient in floating-
point form before converting to then bits fixed-point represen-
tation. For example, instead of convertingambientlight model and
ambientmaterial to n bits of integer, we multiply them in floating-
point representation and then convert the result ton bits of integer.
This way, we can save one bit of accuracy which will be lost due to
the multiplication of twon-bit integers. We next consider the other
sources of error in the following subsections.

6.1.1 Error for Operands with Different Accuracy

Let us consider two operands with different bits of accuracy, sayn

andn0 wheren0 < n. This means that if the maximum possible
value is 1, then the representation errors are2�(n+1) and2�(n

0+1),
respectively. For addition, the error" can be computed as:

" � 2
�(n+1)

+ 2
�(n0+1)

= 2
�(n0+1)

(1 + 2
�(n�n0)

)

As an example, ifn � n
0 = 2, then: " � 2�(n

0+1)(1 + 1
4
). The

error will stay at(n0 + 1)th bit, and the result will getn0 bits of
accuracy, i.e., the same accuracy as the less accurate operand.

Similarly, for multiplication of operands withn andn0 (n0 < n)
accuracy, the maximum possible error happens when the operands
are close to the maximum possible value which we treat as1, as we
discussed in last section:

" � 2
�(n+1) � 1 + 2

�(n0+1) � 1 = 2
�(n0+1)

(1 + 2
�(n�n0)

)

Again, the result has the same accuracy as the less accurate operand.

6.1.2 Error in the Dot Product of Unit Vectors

Let us consider two unit vectors, say�!� and
�!
� , with n bits of

accuracy in each of their three components:

�!
� = (�1; �2; �3) and

�!
� = (�1; �2; �3)

Since the error in the three components"�i and"�i (i = 1; 2; 3)
is in the(n + 1)th bit, i.e.,2�(n+1), their dot product error is:

"
(�!� �

�!
� )

=

3X
i=1

(�i"�i + �i"�i) � 2
�(n+1)

(

3X
i=1

�i +

3X
i=1

�i)

For unit vector�!� , we have:�21 + �
2
2 + �

2
3 = 1 .

From the inequality:a2 + b
2 � 2ab, we get:

(�1 + �2 + �3)
2 � 3(�

2
1 + �

2
2 + �

2
3) = 3

So we have(�1 + �2 + �3) �
p
3. Similarly, we have(�1 +

�2 + �3) �
p
3. Then:

"
(�!� �

�!
� )
� 2

�(n+1)
(

3X
i=1

�i +

3X
i=1

�i) �
p
3 � 2�n

That means, we will lose one to two bits of accuracy for dot product
of two unit vectors.

6.1.3 Error in the Square Root Operation

For lighting calculations we need to normalize the vectors to unit
length before we compute the dot product. Normalization involves
division by the magnitude of the vector which requires a square
root operation. In order to perform all the operations in the fixed-
point arithmetic, we use a a table lookup to get the square root of
an unsigned integer.

For an unsigned integerX with 2n bits of accuracy we take the
most significantn bits (sayX 0) as the lookup index into the square-
root table to find the square root.

X
0
= (X >> n) << n

The maximum possible error ofX 0 relative toX is 2n (because
the information in the lowern bits is lost). We can reduce this error
by half though. If the value of thenth bit of X is one, we can add
one toX >> n, so that it becomes a kind of rounding error instead
of trunction error.

Next, we use the square-root table to find the square-root ofX
0.

Let this bea0 in integer representation:X 0 = a
02. Suppose the

square root ofX in integer representation isa : X = a
2. Let

a
0 = a+ "a ("a is the error), then:

a
02 = (a+ "a)

2 = a
2 + 2a"a + ("a)

2 = X
0

That is,2a"a + ("a)
2 = X

0 �X � 2n�1.
If X > 22n�2, thena > 2n�1, thus:

2a"a < 2a"a + ("a)
2 � 2n�1 and"a < 2n�1

2a
<

2n�1

2�2n�1
<

1
2

Which means that if we use the most significantn bits of the
unsigned integer as index into the square root table then as long as
the integer is bigger than22n�2, the result hasn bits of accuracy.

6.1.4 Error in the Evaluation of Specular Exponentiation

To calculate the specular component of illumination, we have to
compute the exponent of the dot product of half-way vector with
the normal vector. Due to the fact that the dot producta of two unit
vectors is always smaller or equal to1 and that we are only dealing
with positive values of the dot product, we use2m to represent the
largest value1. The maximum possible representation error will be
1
2
, i.e.,2�(m+1) relative to1.
If "a is the error in the valuea of the dot product, then:

(a+ "a)
n �= a

n
+ na"a (if "a << a)

The maximum absolute error happens whena = 1, "a =

2�(m+1), andn is the maximum value of 128: (as implemented
by OpenGL)

na"a < 128 � 2�(m+1)
< 2�(m�6)

So we will havem � 6 bits accuracy in the result, i.e., we will
lose 6 bits accuracy due to this exponentiation.

6.1.5 Putting it all together

From the above analysis, we can get an equation which relates the
input data accuracy with the output color accuracy. Assume the
output color needsn bits accuracy per R, G, and B, which requires
m bits of accuracy in the input data. We next relaten andm.

First, the normalization of each vector will lose 1 bit. As shown
before, the square root will have nearly the same accuracy as the
input data. To avoid the loss of accuracy due to division, instead of
storing the square root, we store the reciprocal of the square root in
the lookup table. This reciprocal is calculated in the floating-point
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representation before converting it to then bits fixed-point repre-
sentation. Thus the only error induced in the normalization will be
in the final multiplication which is a loss of one bit of accuracy.

The dot product of two unit vectors will lose one to two bits
of accuracy. Since the exponentiation will lose six bits, the term
(max f�!s � �!N; 0g)shin will lose 1 + (1 to 2) + 6 = 8 to 9 bits of
accuracy. So the above term have betweenm � 8 andm � 9 bits
of accuracy. Further, the termCspecularwill have the same accuracy
because specularlight�specularmaterial will have m bits of accuracy,

which is much higher than the accuracy of(max f�!s � �!N; 0g)shin.
Similarly, the termCdiffuse will get betweenm � 2 andm � 3

bits of accuracy. And we know the termCambientwill havem bits of
accuracy as explained in the overview.

Overall, (Cambient+ Cdiffuse + Cspecular) will have the accuracy
as the lowest accurate termCspecular, i.e.,m � 8 or m � 9 bits of
accuracy.

Since the attenuation and the spotlight terms can all be evaluated
with more thanm� 8 bits of accuracy, the required color accuracy
bits of the entire illumination equation can be expressed as:

n = m� 8 orm� 9

For example, ifn = 8 , i.e., eight bits per R, G, and B, then the
required accuracy for the input data will ben+ 8 or n+9, i.e., we
will need 16 or 17 bits to represent the input data to get the desired
accuracy of 8 bits per color component.

6.2 View-dependent Variable-Precision Lighting

Similar to the case of transformation in Section 5, we can take ad-
vantage of the spatial coherence of the adjacent vertices in lighting
calculations.The basic idea is that the viewing and lighting direc-
tions do not vary much for the spatially close vertices. Once we
find those directions for one vertex, we can calculate the directions
for the nearby vertices incrementally, i.e., calculate the difference
in far fewer number of bits. The direction difference between the
nearby vertices depend not only on the absolute spatial difference
of the vertices, but also on their distances from the viewer and light
source to the vertices. Once the viewer moves closer to the ver-
tex and below a threshold (which we will describe below) we will
switch back to the original case, i.e., treat that particular vertex in-
dependently of its adjacent vertices.

Figure 6: Incremental Lighting Calculation

In Figure 6 we show how to compute the lighting incrementally.
Let

�!
L1 be the light vector for vertex v1 for which we have already

calculated the illumination. Now we would like to find out the light
vector

�!
L2 for its adjacent vertex v2. The displacement vector

�!
V

between v1 and v2 is normalized by the distance between the v1

and the light source, i.e., its length is equal to the real distance be-
tween v1 and v2 divided by the distance between the v1 and the
light source.1 Both

�!
L1 and

�!
L2 are unit vectors.

One way to accurately compute
�!
L2 is to normalize the sum of

�!
L1

and the vector between v1 and v2. This approach requires roughly

1Note that this assumption is not shown in Figure 6, where
�!

V is shown
to have its length as the distance between v1 and v2.

the same amount of computation as to compute the
�!
L2 directly from

the vector between v2 and the light source. To reduce the computa-
tion, we instead use

�!
L’2 (equal to (

�!
L1 +

�!
V?)) as the approximation

of
�!
L2 if it satisfies our accuracy requirements.

�!
V? is the compo-

nent vector of
�!
V on the perpendicular direction of

�!
L1, which can

be easily computed:
�!
V? =

�!
V ��!L1(

�!
V � �!L1). Using this approach,

the induced error"�!
L2

is equal to
�!
L’2 �

�!
L2.

If the length of
�!
V ,

�!V , is much smaller than 1 (the length of
�!
L1 and

�!
L2), then we have:�!L’ 2

 =

r�!L1

2 + �!V?2 =

r
1 +

�!V?2
� 1 +

�!V?2
2

� 1 +

�!V 2
2

Let the angle between
�!
L1 and

�!
L2 be�, between

�!
L2 and

�!
L’2 be��,

and
�!
Vk be the component vector of

�!
V along the direction of

�!
L1:

� = arctan(

�!V?�!L1

+
�!Vk) = arctan(

�!V?
1 +

�!Vk )

(�+��) = arctan(

�!V?�!L1

 ) = arctan(
�!V?)

So �� = arctan(
�!V?)� arctan(

�!V?
1 +

�!Vk )
�

�!V? (1� 1

1 +
�!Vk ) =

�!V? �!Vk
1 +

�!Vk
<

�!V?�!Vk � 1

2

�!V 2
The last inequality is because

�!V? =
�!V  sin � and

�!Vk =�!V  cos �, andsin � cos � = 1
2
sin(2�) � 1

2
. Thus if the distance

between v1 and v2 is much less than the distance between v1 and
the light source, then

�!L’2
 � 1 =

�!L2

 and�� << 1, therefore"�!
L2

 � 2
�!L2

 tan(��

2
) � �� � 1

2

�!V 2
This means, the error of using

�!
L’ 2 as an approximation of

�!
L2 is

less than1
2

�!V 2. If we want 15 bits of accuracy in
�!
L2; we only

need
�!V  � 2�7, i.e., the distance between v1 to the light source

should be27 = 128 times larger than the distance between v1 and
its addjacent vertex v2. This way we only use the local spatial dif-
ferences in calculating the new direction and avoid an expensive
vector normalization operation.

7 Some Implementation Details

In addition to what we have already described in the previous sec-
tions, there are some other implementation details which are worth
mentioning.
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Model Bunny DHFR Dragon Venus AMR Buddha
Size (triangles) 69K 145K 202K 268K 376K 1087K

Transform 61 130 185 230 330 968
Floating Lighting 469 1042 1374 1830 2503 7481

Point Other 56 108 167 218 298 902
Total 586 1280 1726 2278 3131 9351

Transform 17 33 46 59 83 235
Variable Lighting 79 155 212 280 337 882
Precision Other 42 87 127 160 212 616

Total 138 275 385 499 632 1733
Speedup 4.25 4.65 4.48 4.57 4.96 5.40

erms (object space) 1.3e-4 1.3e-4 1.2e-4 1.2e-4 1.1e-4 1.2e-4
Max error (obj. space) 3.0e-4 3.1e-4 3.0e-4 2.9e-4 2.6e-4 3.1e-4
erms (image space) 8.5e-3 8.8e-3 8.7e-3 6.0e-3 8.4e-3 7.0e-3

Table 1: Results from Rendering at Varying Precisions

7.1 Batched Transformation and Lighting

Most graphics APIs (OpenGL, Direct3D, Glide) allow the user to
transform and light the triangles one at a time and send the trans-
formed and lighted triangles in floating-point screen coordinates to
the rasterizer. Since these APIs do not accept screen-space triangles
in the fixed-point representation, we had to convert our fixed-point
results to floating-point representation before asking the graphics
API to rasterize the triangles. In MMX technology, this means that
we need to reset the register flag back and forth when we switch
from the integer operation to floating point because these two share
the same registers. The frequent resetting costs time, so the intuitive
solution is to minimize the number of resets, e.g., transform and
light the whole dataset first in object space, then do the viewport
transform and then send to the rasterizer. There are two problems
with this approach. First we lose some opportunities of pipelining
which the hardware is very smart at. Second, there are lots of extra
memory accesses due to the write-back, so this does not work well.

To solve this problem, we make a tradeoff. Instead of transform-
ing and lighting the triangle one by one or all at the same time, we
do them batch by batch. The resetting of the flag only happens be-
tween batches and we avoid the extra memory accesses. In practice,
we find batch size of several hundred triangles works gracefully. If
the graphics APIs accepted screen-space fixed-point representation
triangles, we would not have to deal with this and our results would
have been better than reported here since switching from fixed-point
to floating-point is expensive even when we do them in batches.

7.2 Full-precision Matrix Calculation

At each view point we first calculate the transformation matrix and
then apply it to all the vertices in the dataset. The initial matrix
calculation is a negligible fraction of the overall computation which
includes transformation of hundreds of thousands of vertices. So
we compute it in full precision floating point before converting it
into the fixed-point representation. This way, we save the precision
of the matrix elements, and avoid the possibility of error build up
when we take advantage of the temporal coherence of the frames
in transformation because the matrix is computed in full precision
separately for each frame.

8 Results

We have tested our approach on polygonal datasets from several ap-
plication domains including laser-scanned, mechanical CAD, and
procedurally generated datasets. The results of our approach are
summarized in Tables 1, 2, 3 and appear in Figures 1, 4, 7–14.

We obtained the results shown in the paper and the video on a
Pentium II 400MHz PC with 128MB RAM and a Voodoo3 3500

(a) Floating Point (b) Variable-Precision
Lighting Lighting (Speedup: 2.99)

Figure 7: Variable-Precision Lighting of Bunny Model
(Transformations have been calculated in floating-point)

graphics card. Table 1 compares the results using variable preci-
sion with the one using traditional single-precision floating point
and times are reported in milliseconds. The variable precision ren-
dering showing here is under the requirements of guaranteed pixel-
level position accuracy and eight bits per R, G, and B color. The
object space root-mean-square error and maximum error are mea-
sured in transformed object space as the distance between the single
precision floating point transformed vertices and variable precision
transformed ones, while the image space root-mean-square error is
measured in the final image space as the difference between the R,
G, B color components. The formula for image space root-mean-
square error is the following:

erms =

"
1

MN

M�1X
x=0

N�1X
y=0

h bf(x; y)� f(x; y)
i2#1=2

Wheref(x; y) represents the original image,bf(x; y) denotes an
estimate of the image, andM �N is the image size.

From Table 1, we can see that under the pixel-level accuracy, the
maximum transformed distance between the two methods is less
than 0.00033 for all the six datasets tested . We know the normal-
ized transformed object space is in the range [-1.0, +1.0], so the
difference is less than six-thousandth of the total range. This shows
robustness of our method. Further, instead of getting pixel-level
accuracy, our method actually gave us 2 to 3 sub-pixel bits of accu-
racy. This is because our error analysis gives the upper bounds of
the error; the real error is usually much less. To roughly compare
how variable precision rendering stacks up against multiresolution
rendering, we compared the object space Hausdorff error in a 16K
triangle model of the Bunny using Metro [5] against a 69K triangle
model of the Bunny using 7.9 bits/vertex coordinate. Although both
give a factor of 4 speedup, the variable precision method has an or-
der of magnitude smaller object space Hausdorff error (0.012% of
the bounding box diagonal) compared with 16K triangle full preci-
sion model (0.12% of the bounding box diagonal).

We can see more than a factor of four speedup in all the datasets
tested. One aspect of our algorithm is that it scales well. The
speedup factor goes up with the increase of scene complexity
(which means more data will be rendered in less precision) and the

Output Conventional Spatial Spatio-Temporal
bits Add Mult Add Mult Add Mult

32 bits 32 32 42.21 31.55 54.08 29.23
16 bits 16 16 12.95 7.77 13.77 4.02
8 bits 8 8 1.35 0.66 0.77 0.08
4 bits 4 4 0.03 0.02 0.01 0.001

Table 2: Average Number of Bits per Vertex Coordinate Oper-
ated upon for Appropriate Output Precision
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Output Conventional Spatial Spatio-Temporal
bits Add Mult Add Mult Add Mult

32 bits 6 8 7.92 7.89 10.14 7.31
16 bits 3 4 2.43 1.94 2.58 1.01
8 bits 1.5 2 0.25 0.17 0.14 0.02
4 bits 0.75 1 0.01 0.004 0.002 0.0002

Table 3: Average number of equivalent 32-bit operations per
vertex coordinate for appropriate output precision

number of light sources. See Figure 8 and Table 1.
Figure 9 shows the histogram of percentage of vertices trans-

formed in different number of bits for AMR dataset, which has a
very low average 4.18 bits/vertex coordinate for variable-precision
transformation, instead of 32 bits/vertex coordinate as in the single-
precision floating point case. Figures 1, 10–14 show the images
rendered by variable precision rendering and compare them with
the single-precision floating point rendering. Even from the closeup
there is hardly any visual distinguishable difference.

Table 2 shows the average number of bits that have to be manipu-
lated per vertex during the transformations while exploiting spatial
and temporal coherences. Since the vertices that are at the lower
levels of the octree require less number of bits for transformation,
the overall average number of bits turns out to be much less. The
leftmost column indicates the number of bits that are required in the
output display.

Table 3 shows the average number of equivalent 32-bit opera-
tions per vertex during the transformations while exploiting spatial
and temporal coherences. Central to this idea is that one 32-bit
operation is equivalent to two 16-bit, four 8-bit, and eight 4-bit op-
erations. Even though SIMD parallelism at the level of 4-bits is not
yet available in the current generation of processors, the table shows
the effectiveness of our scheme if such parallelisms were to become
available in future. As in table 2, the leftmost column indicates the
number of bits that are required in the output display.

9 Conclusions

We have presented a novel approach to take advantage of SIMD
parallelism in modern processors to speedup the transformation and
lighting stages of the graphics pipeline. Our approach can success-
fully trade-off the precision for speed without significantly affecting
the visual quality of the rendered images. In addition, Our approach
is complementary to the conventional multiresolution approaches
that rely on speeding up the rendering by reducing the number of
graphics primitives for display.

In this paper we have mostly dealt with reducing the precision
of all the three coordinatesx, y, andz of the displayed primitives.

Figure 8: Speedup Factor as Function of Number of Light
Sources (Venus Model)

However, a case can be made for not reducing the precision for
the eye-spacez in applications that have a high depth complexity
since it can interfere with the proper execution of the visible-surface
determination stage of the graphics pipeline (e.g., see [25]). This
suggests potential for further work in relating precision in x, y, z
with accurate scan-conversion, extending the precision work in [25]
and in this paper.

Here we have focused on using variable precision for transforma-
tions and lighting. In future, one can carry out a similar analysis to
extend it to texture coordinate computation as well. Also interesting
will be applications of this method to compute the delta-differences
on-the-fly for hardware-supported graphics primitives such as tri-
angle strips that currently only exploit connectivity coherence, but
using ideas in this paper could also benefit from spatial coherence.
We plan to explore these ideas in the future.
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(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (4.2 bits/vertex coordinate) Closeup Closeup

Figure 12: Auxiliary Machine Room (376K triangles) Rendered in Variable Precision

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (7.1 bits/vertex coordinate) Closeup Closeup

Figure 13: Cyberware Venus (268K triangles) Rendered in Variable Precision

(a) Floating Point (b) Variable Precision (c) Floating Point (d) Variable Precision
(32 bits/vertex coordinate) (5.6 bits/vertex coordinate) Closeup Closeup

Figure 14: Buddha Model(1087K triangles) Rendered in Variable Precision
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1. INTRODUCTION

1.1 Motivation

In 3D computer graphics, polygonal models are often used to represent individual objects

and entire environments. Planar polygons, especially triangles, are used primarily because

they are easy and efficient to render. Their simple geometry has enabled the development of

custom graphics hardware, currently capable of rendering millions or even tens of millions of

triangles per second. In recent years, such hardware has become available even for personal

computers. Due to the availability of such rendering hardware and of software to generate

polygonal models, polygons will continue to play an important role in 3D computer graphics

for many years to come.

However, the simplicity of the triangle is not only its main advantage, but its main disad-

vantage as well. It takes many triangles to represent a smooth surface, and environments of

tens or hundreds of millions of triangles or more are becoming quite common in the fields of

industrial design and scientific visualization. For instance, in 1994, the UNC Department of

Computer Science received a model of a notional submarine from the Electric Boat division

Figure 1: The auxiliary machine room of a notional submarine model: 250,000 triangles



of General Dynamics, including an auxiliary machine room composed of 250,000 triangles

(see Figure 1) and a torpedo room composed of 800,000 triangles. In 1997, we received from

ABB Engineering a coarsely-tessellated model of an entire coal-fired power plant, composed

of over 13,000,000 triangles. It seems that the remarkable performance increases of 3D

graphics hardware systems cannot yet match the desire and ability to generate detailed and

realistic 3D polygonal models.

1.2 Polygonal Simplification

This imbalance of 3D rendering performance to 3D model size makes it difficult for

graphics applications to achieve interactive frame rates (10-20 frames per second or more).

Interactivity is an important property for applications such as architectural walkthrough,

industrial design, scientific visualization, and virtual reality. To achieve this interactivity in

spite of the enormity of data, it is often necessary to trade fidelity for speed.

We can enable this speed/fidelity tradeoff by creating a multi-resolution representation of

our models. Given such a representation, we can render smaller or less important objects in

the scene at a lower resolution (i.e. using fewer triangles) than the larger or more important

objects, and thus we render fewer triangles overall. Figure 2 shows a widely-used test model:

the Stanford bunny. This model was acquired using a laser range-scanning device; it contains

over 69,000 triangles. When the 2D image of this model has a fairly large area, this may be a

reasonable number of triangles to use for rendering the image. However, if the image is

smaller, like Figure 3 or Figure 4, this number of triangles is probably too large. The right-

most image in each of these figures shows a bunny with fewer triangles. These complexities

are often more appropriate for image of these sizes. Each of these images is typically some

small piece of a much larger image of a complex scene.

For CAD models, such representations could be created as part of the process of building

the original model. Unfortunately, the robust modeling of 3D objects and environments is

already a difficult task, so we would like to explore solutions that do not add extra burdens to

the original modeling process. Also, we would like to create such representations for models

acquired by other means (e.g. laser scanning), models that already exist, and models in the

process of being built.



Figure 2: The Stanford bunny model: 69,451 triangles

69,451 triangles 2,204 triangles

Figure 3: Medium-sized bunnies.

69,451 triangles 575 triangles

Figure 4: Small-sized bunnies.



Simplification is the process of automatically reducing the complexity of a given model.

By creating one or more simpler representations of the input model (generally called levels of

detail), we convert it to a multi-resolution form. This problem of automatic simplification is

rich enough to provide many interesting and useful avenues of research. There are many

issues related to how we represent these multi-resolution models, how we create them, and

how we manage them within an interactive graphics application. This dissertation is con-

cerned primarily with the issues of level-of-detail quality and rendering performance. In

particular, we explore the question of how to preserve the appearance of the input models to

within an intuitive, user-specified tolerance and still achieve a significant increase in render-

ing performance.

1.3 Topics Covered

This paper reviews some fundamental concepts necessary to understand algorithms for

simplification of polygonal models at a high level. These concepts include optimal/near-

optimal solutions for the simplification problem, the use of local simplification operations,

topology preservation, level-of-detail representations for polygonal models, error measures

for surface deviation, and the preservation of appearance attributes. This is not a complete

survey of the field of polygonal model simplification, which has grown to be quite large (for

more information, several survey papers are available [Erikson 1996, Heckbert and Garland

1997]).  In particular, this paper does not provide much coverage of algorithms specialized

for simplifying polygonal terrains, nor does it cover simplification and compression algo-

rithms geared towards progressive transmission applications.

2. OPTIMALITY

There are two common formulations of the simplification problem, described in

[Varshney 1994], to which we may seek optimal solutions:

• Min-# Problem: Given some error bound, ε, and an input model, I, compute the mini-

mum complexity approximation, A, such that no point of A is farther than ε distance away

from I and vice versa (the complexity of A is measured in terms of number of vertices or

faces).



• Min-εε Problem: Given some target complexity, n, and an input model, I, compute the

approximation, A, with the minimum error, ε, described above.

In computational geometry, it has been shown that computing the min-# problem is NP-

hard for both convex polytopes [Das and Joseph 1990] and polyhedral terrains [Agarwal and

Suri 1994]. Thus, algorithms to solve these problems have evolved around finding polyno-

mial-time approximations that are close to the optimal.

Let k0 be the size of a min-# approximation. An algorithm has been given in [Mitchell

and Suri 1992] for computing an ε-approximation of size O(k0 log n) for convex polytopes of

initial complexity n. This has been improved by Clarkson in [Clarkson 1993]; he proposes a

randomized algorithm for computing an approximation of size O(k0 log k0) in expected time

O(k0n1+δ) for any δ > 0 (the constant of proportionality depends on δ, and tends to +∞ as δ

tends to 0). In [Brönnimann and Goodrich 1994] Brönnimann and Goodrich observed that a

variant of Clarkson's algorithm yields a polynomial-time deterministic algorithm that com-

putes an approximation of size O(k0). Working with polyhedral terrains, [Agarwal and Suri

1994] present a polynomial-time algorithm that computes an ε-approximation of size

O(k0 log k0) to a polyhedral terrain.

Because the surfaces requiring simplification may be quite complex (tens of thousands to

millions of triangles), the simplification algorithms used in practice must be o(n2) (typically

O(n log n)) for the running time to be reasonable. Due to the difficulty of computing near-

optimal solutions for general polygonal meshes and the required efficiency, most of the

algorithms described in the computer graphics literature employ local, greedy heuristics to

achieve what appear to be reasonably good simplifications with no guarantees with respect to

the optimal solution.

3. LOCAL SIMPLIFICATION OPERATIONS

Simplification is often achieved by performing a series of local operations. Each such op-

eration serves to coarsen the polygonal model by some small amount. A simplification

algorithm generally chooses one of these operation types and applies it repeatedly to its input

surface until the desired complexity is achieved for the output surface.



3.1 Vertex Remove

The vertex remove operation involves removing from the surface mesh a single vertex

and all the triangles touching it. This removal process creates a hole that we then fill with a

new set of triangles. Given a vertex with n adjacent triangles, the removal process creates a

hole with n sides. The hole filling problem involves a discrete choice from among a finite

number of possible retriangulations for the hole. The n triangles around the vertex are re-

placed by this new triangulation with n-2 triangles. The Catalan sequence,
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describes the number of unique ways to triangulate a convex, planar polygon with i+2 sides

[Dörrie 1965, Plouffe and Sloan 1995]. This provides an upper bound on the number of non-

self-intersecting triangulations of a hole in 3D. For example, holes with 3 sides have only 1

triangulation, and holes with 4, 5, 6, 7, 8, and 9 sides have up to 2, 5, 14, 42, 132, and 429

triangulations, respectively.

Both [Turk 1992] and [Schroeder et al. 1992] apply the vertex remove approach as part of

their simplification algorithms. Turk uses point repulsion (weighted according to curvature)

to distribute some number of new vertices across the original surface, then applies vertex

remove operations to remove most of the original vertices. Holes are retriangulated using a

planar projection approach. Schroeder also uses vertex remove operations to reduce mesh

complexity, employing a recursive loop splitting algorithm to fill the necessary holes.

Figure 5: Vertex remove operation



3.2 Edge Collapse

The edge collapse operation has become popular in the graphics community in the last

several years. The two vertices of an edge are merged into a single vertex. This process

distorts all the neighboring triangles. The triangles that contain both of the vertices (i.e. those

that touch the entire edge) degenerate into 1-dimensional edges and are removed from the

mesh. This typically reduces the mesh complexity by 2 triangles.

Whereas the vertex remove operation amounts to making a discrete choice of triangula-

tions, the edge collapse operation requires us to choose the coordinates of the new vertex

from a continuous domain. Common choices for these new coordinates include the coordi-

nates of one of the two original vertices, the midpoint of the collapsed edge, arbitrary points

along the collapsed edge, or arbitrary points in the neighborhood of the collapsed edge.

Not only is the choice of new vertex coordinates for the edge collapse a continuous prob-

lem, but the actual edge collapse operation may be performed continuously in time. We can

linearly interpolate the two vertices from their original positions to the final position of the

new vertex. This allows us to create smooth transitions as we change the mesh complexity.

As described in [Hoppe 1996], we can even perform geomorphs, which smoothly transition

between versions of the model with widely varying complexity by performing many of these

interpolations simultaneously.

In terms of the ability to create identical simplifications, the vertex removal and edge

collapse operations are not equivalent. If we collapse an edge to one of its original vertices,

we can create n of the triangulations possible with the vertex remove, but there are still

C(n+2)-n triangulations that the edge collapse cannot create. Of course, if we allow the edge

collapse to choose arbitrary coordinates for its new vertex, it can create infinitely many

simplifications that the vertex remove operation cannot create. For a given input model and

Figure 6: Edge collapse operation



desired output complexity, it is not clear which type of operation can achieve a closer ap-

proximation to the input model.

The edge collapse was used by [Hoppe et al. 1993] as part of a mesh optimization process

that employed the vertex remove and edge swap operations as well (the edge swap is a

discrete operation that takes two triangles sharing an edge and swaps which pair of opposite

vertices are connected by the edge). In [Hoppe 1996], the vertex remove and edge swaps are

discarded, and the edge collapse alone is chosen as the simplification operation, allowing a

simpler system that can take advantage of the features of the edge collapse. Although systems

employing multiple simplification operations might possibly result in better simplifications,

they are generally more complex and cannot typically take advantage of the inherent features

of any one operation.

3.3 Face Collapse

The face collapse operation is similar to the edge collapse operation, except that it is more

coarse-grained. All three vertices of a triangular face are merged into a single vertex. This

causes the original face to degenerate into a point and three adjacent faces to degenerate into

line segments, removing a total of four triangles from the model. The coarser granularity of

this operation may allow the simplification process to proceed more quickly, at the expense

of the fine-grained local control of the edge collapse operation. Thus, the error is likely to

accumulate more quickly for a comparable reduction in complexity. [Hamann 1994, Gieng et

al. 1997] use the face collapse operation in their simplification systems. The new vertex

coordinates are chosen to lie on a local quadratic approximation to the mesh. Naturally, it is

possibly to further generalize these collapse operations to collapse even larger connected

portions of the input model. It may even be possible to reduce storage requirements by

grouping nearby collapse operations with similar error bounds into larger collapse operations.

Figure 7: Face collapse operation



Thus, the fine-grained control may be traded for reduced storage and other overhead require-

ments in certain regions of the model.

3.4 Vertex Cluster

Unlike the preceding simplification operations, the vertex cluster operation relies solely

on the geometry of the input (i.e. the vertex coordinates) rather than the topology (i.e. the

adjacency information) to reduce the complexity. Like the edge and face collapses, several

vertices are merged into a single vertex. However, rather than merging a set of topologically

adjacent vertices, a set of “nearby” vertices are merged [Rossignac and Borrel 1992]. For

instance, one possibility is to merge all vertices that lie within a particular 3D axis-aligned

box. The new, merged vertex may be one of the original vertices that “best represents” the

entire set, or it may be placed arbitrarily to minimize some error bound. An important prop-

erty of this operation is that it can be robustly applied to arbitrary sets of triangles, whereas

all the preceding operations assume that the triangles form a connected, manifold mesh.

The effects of this vertex cluster are similar to those of the collapse operations. Some tri-

angles are distorted, whereas others degenerate to a line segment or a point. In addition, there

may be coincident triangles, line segments, and points originating from non-coincident

geometry. One may choose to render the degenerate triangles as line segments and points, or

one may simply not render them at all. Depending on the particular graphics engine, render-

ing a line or a point may not be much faster than rendering a triangle. This is an important

consideration, because achieving a speed-up is one of the primary motivations for simplifica-

tion.

There is no point in rendering several coincident primitives, so multiple copies are fil-

tered down to a single copy. However, the question of how to render coincident geometry is

complicated by the existence of other surface attributes, such as normals and colors. For

Figure 8: Vertex Cluster operation



instance, suppose two triangles of wildly different colors become coincident. No matter what

color we render the triangle, it may be noticeably incorrect.

[Rossignac and Borrel 1992] use the vertex clustering operation in their simplification

system to perform very fast simplification on arbitrary polygonal models. They partition the

model space with a uniform grid, and vertices are collapsed within each grid cell. [Luebke

and Erikson 1997] build an octree hierarchy rather than a grid at a single resolution. They

dynamically collapse and split the vertices within an octree cell depending on the current size

of the cell in screen space as well as silhouette criteria.

Figure 9: Generalized edge collapse operation

3.5 Generalized Edge Collapse

The generalized edge collapse (or vertex pair) operation combines the fine-grained con-

trol of the edge collapse operation with the generality of the vertex cluster operation. Like the

edge collapse operation, it involves the merging of two vertices and the removal of degener-

ate triangles. However, like the vertex cluster operation, it does not require that the merged

vertices be topologically connected (by a topological edge), nor does it require that topologi-

cal edges be manifold.

[Garland and Heckbert 1997] apply the generalized edge collapse in conjunction with er-

ror quadrics to achieve simplification that gives preference to the collapse of topological

edges, but also allows the collapse of virtual edges (arbitrary pairs of vertices). These virtual

edges are chosen somewhat heuristically, based on proximity relationships in the original

mesh.

Figure 10: Unsubdivide operation



3.6 Unsubdivide

Subdivision surface representations have also been proposed as a solution to the multi-

resolution problem. In the context of simplification operations, we can think of the “unsubdi-

vide” operation (the inverse of a subdivision refinement) as our simplification operation. A

common form of subdivision refinement is to split one triangle into four triangles. Thus the

unsubdivide operation merges four triangles of a particular configuration into a single trian-

gle, reducing the triangle count by three triangles.

[DeRose et al. 1993] shows how to represent a subdivision surface at some finite resolu-

tion as a sequence of wavelet coefficients. The sequence of coefficients is ordered from lower

to higher frequency content, so truncating the sequence at a particular point determines a

particular mesh resolution. [Eck et al. 1995] presents an algorithm to turn an arbitrary topol-

ogy mesh into one with the necessary subdivision connectivity. They construct a base mesh

of minimal resolution and guide its refinement to come within some tolerance of the original

mesh. This new refined subdivision mesh is used in place of the original mesh, and its

resolution is controlled according to the wavelet formulation.

4. TOPOLOGICAL CONSIDERATIONS

4.1 Manifold vs. Non-manifold Meshes

Polygonal simplification algorithms may be distinguished according to the type of input

they accept.  Some algorithms require the input to be a manifold triangle mesh, while others

accept more general triangle sets. In the continuous domain, a manifold surface is one that is

everywhere homeomorphic to an open disc. In the discrete domain of triangle meshes, such a

surface has two topological properties. First, every vertex is adjacent to a set of triangles that

form a single, complete cycle around the vertex. Second, each edge is adjacent to exactly two

triangles. For a manifold mesh with borders, these restrictions are slightly relaxed. A border

is simply a chain of edges with adjacent triangles only to one side.  In a manifold mesh with

borders, a vertex may be surrounded by a single, incomplete cycle (i.e. the beginning need

not meet the end). Also, an edge may be adjacent to either one or two triangles.



A mesh that does not have the above properties is said to be non-manifold. Such meshes

may occur in practice by accident or by design. Accidents are possible, for example, during

either the creation of the mesh or during conversions between representation, such as the

conversion from a solid to a boundary representation. The correction of such accidents is a

subject of much interest [Barequet and Kumar 1997, Murali and Funkhouser 1997]. They

may occur by design because such a mesh may require fewer triangles to render than a

visually-comparable manifold mesh or because such a mesh may be easier to create in some

situations.  If the non-manifold portions of a mesh are few and far between, we may refer to

the mesh as mostly manifold.

At the extreme, some data sets take the form of a set of triangles, with no connectivity

information whatsoever (sometimes referred to as a “triangle soup”).  Such data might turn

out to be manifold or non-manifold if we were to attempt to reconstruct the connectivity

information.  In general, if any conversion has been performed on the original data, it’s safe

to assume that a naïve reconstruction will result in at least some non-manifold regions.

The most robust algorithms, based on vertex clusters, operate as easily on a triangle soup

as on a perfectly manifold mesh [Rossignac and Borrel 1992], [Luebke and Erikson 1997].

This advantage cannot be stressed enough and is extremely important in the case where the

simplification user has no control over the data.  The ability to view an large, unfamiliar data

set interactively is invaluable in the process of learning its ins and outs, and these algorithms

allow one to get up and running quickly.

However, these very general algorithms do not typically create simplifications that look

as attractive as those produced by algorithms that operate on manifold meshes.  These

algorithms, which rely on operations such as the vertex remove or edge collapse, respect the

topology of the original mesh and avoid catastrophic changes to the surface and its appear-

ance.  The manifold input criterion does limit the applicability of these algorithms to some

real-world models, but many of these algorithms may be modified to handle mostly manifold

meshes by avoiding simplification of the non-manifold regions.  This can be an effective

strategy until the non-manifold regions begin to dominate the surface complexity.



The vertex pair and edge collapse operations can both operate on non-manifold meshes as

well as manifold ones. Vertex-pair algorithms must deal with the non-manifold meshes they

are bound to create by merging non-adjacent vertices.  Edge collapse algorithms can operate

on non-manifold meshes, but it may be difficult to adapt the most rigorous error metrics for

manifold meshes to use on non-manifold meshes.

4.2 Topology Preservation

The topological structure of a polygonal surface typically refers to features such as its ge-

nus (number of topological holes, e.g. 0 for a sphere, 1 for a torus or coffee mug) and the

number and arrangement of its borders. These features are fully determined by the adjacency

graph of the vertices, edges, and faces of a polygonal mesh. For manifold meshes with no

borders (i.e. closed surfaces), the Euler equation holds:

F E V G− + = −2 , (2)

where F is the number of faces, E is the number of edges, V is the number of vertices, and G

is the genus.

In addition to this combinatorial description of the topological structure, the embedding

of the surface in 3-space impacts its perceived topology in 3D renderings. Generally, we

expect the faces of a surface to intersect only at their shared edges and vertices.

Most of the simplification operations described in section 3 (all except the vertex cluster

and the generalized edge collapse) preserve the connectivity structure of the mesh. If a

simplification algorithm uses such an operation and also prevents local self-intersections

(intersections within the adjacent neighborhood of the operation), we say the algorithm

preserves local topology. If the algorithm prevents any self-intersections in the entire mesh,

we say it preserves global topology.

If the simplified surface is to be used for purposes other than rendering (e.g. finite ele-

ment computations), topology preservation may be essential. For rendering applications,

however, it is not always necessary. In fact, it is often possible to construct simplifications

with fewer polygons for a given error bound if topological modifications are allowed.



However, some types of topological modifications may have a dramatic impact on the

appearance of the surface. For instance, many meshes are the surfaces of solid objects. For

example, consider the surface of a thin, hollow cylinder. When the surface is modified by

more than the thickness of the cylinder wall, the interior surface will intersect the outer

surface. This can cause artifacts that cover a large area on the screen. Problems also occur

when polygons with different color attributes become coincident.

Certain types of topological changes are clearly beneficial in reducing complexity, and

have a smaller impact on the rendered image. These include the removal of topological holes

and thin features (such as the antenna of a car). Topological modifications are encouraged in

[Rossignac and Borrel 1992], [Luebke and Erikson 1997], [Garland and Heckbert 1997] and

[Erikson and Manocha 1998] and controlled modifications are performed in [He et al. 1996]

and [El-Sana and Varshney 1997].

5. LEVEL-OF-DETAIL REPRESENTATIONS

We can classify the possible representations for level-of-detail models into two broad

categories: static and dynamic. Static levels of details are computed totally off-line. They are

fully determined as a pre-process to the visualization program. Dynamic levels of detail are

typically computed partially off-line and partially on-line within the visualization program.

We now discuss these representations in more detail.

5.1 Static Levels of Detail

The most straightforward level-of-detail representation for an object is a set of independ-

ent meshes, where each mesh has a different number of triangles. A common heuristic for the

generation of these meshes is that the complexity of each mesh should be reduced by a factor

of two from the previous mesh. Such a heuristic generates a reasonable range of complexi-

ties, and requires only twice as much total memory as the original representation.

It is common to organize the objects in a virtual environment into a hierarchical scene

graph [van Dam 1988, Rohlf and Helman 1994]. Such a scene graph may have a special type

of node for representing an object with levels of detail. When the graph is traversed, this



level-of-detail node is evaluated to determine which child branch to traverse (each branch

represents one of the levels of detail). In most static level-of-detail schemes, the children of

the level-of-detail nodes are the leaves of the graph. [Erikson and Manocha 1998] presents a

scheme for generating hierarchical levels of detail. This scheme generates level-of-detail

nodes throughout the hierarchy rather than just at the leaves. Each such interior level-of-detail

node involves the merging of objects to generate even simpler geometric representations.

This overcomes one of the previous limitations of static levels of detail  the necessity for

choosing a single scale at which objects are identified and simplified.

The transitions between these levels of detail are typically handled in one of three ways:

discrete, blended, or morphed. The discrete transitions are instantaneous switches; one level

of detail is rendered during one frame, and a different level of detail is rendered during the

following frame. The frame at which this transition occurs is typically determined based on

the distance from the object to the viewpoint. This technique is the most efficient of the three

transition types, but also results in the most noticeable artifacts.

Blended transitions employ alpha-blending to fade between the two levels of detail in

question. For several frames, both levels of detail are rendered (increasing the rendering cost

during these frames), and their colors are blended. The blending coefficients change gradually

to fade from one level of detail to the other. It is possible to blend over a fixed number of

frames when the object reaches a particular distance from the viewpoint, or to fade over a

fixed range of distances [Rohlf and Helman 1994]. If the footprints of the objects on the

screen are not identical, blending artifacts may still occur at the silhouettes.

Morphed transitions involve gradually changing the shape of the surface as the transition

occurs. This requires the use of some correspondence between the two levels of detail. Only

one representation must be rendered for each frame of the transition, but the vertices require

some interpolation each frame. For instance, [Hoppe 1996] describes the geomorph transition

for levels of detail created by a sequence of edge collapses. The simpler level of detail was

originally generated by collapsing some number of vertices, and we can create a transition by

simultaneously interpolating these vertices from their positions on one level of detail to their

positions on the other level of detail. Thus the number of triangles we render during the



transition is equal to the maximum of the numbers of triangles in the two levels of detail. It is

also possible to morph using a mutual tessellation of the two levels of detail, as in [Turk

1992], but this requires the rendering of more triangles during the transition frames.

5.2 Dynamic Levels of Detail

Dynamic levels of detail provide representations that are more carefully tuned to the

viewing parameters of each particular rendered frame. Due to the sheer number of distinct

representations this requires, each representation cannot simply created and stored independ-

ently. The common information among these representations is used to create a single

representation for each simplified object. From this unified representation, a geometric

representation that is tuned to the current viewing parameters is extracted. The coherence of

the viewing parameters enables incremental modifications to the geometry rendered in the

previous frame; this makes the extraction process feasible at interactive frame rates.

[Hoppe 1996] presents a representation called the progressive mesh. This representation

is simply the original object plus an ordered list of the simplification operations performed on

the object. It is generally more convenient to reverse the order of this intuitive representation,

representing the simplest base mesh plus the inverse of each of the simplification operations.

Applying all of these inverse operations to the base mesh will result in the original object

representation. A particular level of detail of this progressive mesh is generated by perform-

ing some number of these operations.

In [Hoppe 1997], the progressive mesh is reorganized into a vertex hierarchy. This hierar-

chy is a tree that captures the dependency of each simplification operation on certain previous

operations. Similar representations include the merge tree of [Xia et al. 1997], the multire-

solution model of [Klein and Krämer 1997], the vertex tree of [Luebke and Erikson 1997],

and the multi-triangulation of [DeFloriani et al. 1997]. Such hierarchies allow selective

refinement of the geometry based on various metrics for screen-space deviation, normal

deviation, color deviation, and other important features such as silhouettes and specular

highlights. A particular level of detail may be expressed as a cut through these graphs, or a

front of vertex nodes. Each frame, the nodes on the current front are examined, and may

cause the graph to be refined at some of these nodes.



[DeFloriani et al. 1997] discuss the properties of such hierarchies in terms of graph char-

acteristics. Examples of these properties include compression ratio, linear growth, logarith-

mic height, and bounded width. They discuss several different methods of constructing such

hierarchies and test these methods on several benchmarks. For example, one common heuris-

tic for building these hierarchies is to choose simplification operations in a greedy fashion

according to an error metric. Another method is to choose a set of operations with disjoint

areas of influence on the surface and apply this entire set before choosing the next set. The

former method does not guarantee logarithmic height, whereas the latter does. Such height

guarantees can have practical implications in terms of the length of the chain of dependent

operations that must be performed in order to achieve some particular desired refinement.

[DeRose et al. 1993] present a wavelet-based representation for surfaces constructed with

subdivision connectivity. [Eck et al. 1995] make this formulation applicable to arbitrary

triangular meshes by providing a remeshing algorithm to approximate an arbitrary mesh by

one with the necessary subdivision connectivity. Both the remeshing and the filter-

ing/reconstruction of the wavelet representation provide bounded error on the surfaces

generated. [Lee et al. 1998] provide an alternate remeshing algorithm based on a smooth,

global parameterization of the input mesh. Their approach also allows the user to constrain

the parameterization at vertices or along edges of the original mesh to better preserve impor-

tant features of the input.

5.3 Comparison

Static levels of detail allow us to perform simplification entirely as a pre-process. The

real-time visualization system performs only minimal work to select which level of detail to

render at any given time. Because the geometry does not change, it may be rendered in

retained mode (i.e. from cached, optimized display lists). Retained-mode rendering should

always be at least as fast as immediate mode rendering, and is much faster on most current

high-end hardware. Perhaps the biggest shortcoming of using static levels of detail is that

they require that we partition the model into independent “objects” for the purpose of simpli-

fication. If an object is large with respect to the user or the environment, especially if the

viewpoint is often contained inside the object, little or no simplification may be possible.



This may require that such objects be subdivided into smaller objects, but switching the

levels of detail of these objects independently causes visible cracks, which are non-trivial to

deal with.

Dynamic levels of detail perform some of simplification as a pre-process, but defer some

of the work to be computed by the real-time visualization system at run time. This allows us

to provide more fine-tuning of the exact tessellation to be used, and allows us to incorporate

more view-dependent criteria into the determination of this tessellation. The shortcoming of

such dynamic representations is that they require more computation in the visualization

system as well as the use of immediate mode rendering. Also, the memory requirements for

such representations are often somewhat larger than for the static levels of detail.

6. SURFACE DEVIATION ERROR BOUNDS

Measuring the deviation of a polygonal surface as a result of simplification is an impor-

tant component of the simplification process. This surface deviation error gives us an idea of

the quality of a particular simplification. It helps guide the simplification process to produce

levels of detail with low error, determine when it is appropriate to show a particular level of

detail of a given surface, and optimize the levels of detail for an entire scene to achieve a high

overall image quality for the complexity of the models actually rendered.

6.1 Distance Metrics

Before discussing the precise metrics and methods used by several researchers for meas-

uring surface deviation, we consider two formulations of the distance between two surfaces.

These are the Hausdorff distance and the mapping distance. The Hausdorff distance is a well-

known concept from topology, used in image processing as well as surface modeling, and the

mapping distance is a commonly used metric for parametric surfaces.

6.1.1 Hausdorff Distance

 The Hausdorff distance is a distance metric between point sets. Given two sets of points,

A and B, the Hausdorff distance is defined as

H( ) max(h( ),h( ))A,B A,B B,A= , (3)



where

h( ) maxminA,B a b
a A b B

= −
∈ ∈

. (4)

Thus the Hausdorff distance measures the farthest distance from a point in one point set

to its closest point in the other point set (notice that h(A,B) ≠ h(B,A)). Because a surface is a

particular type of continuous point set, the Hausdorff distance provides a useful measure of

the distance between two surfaces.

6.1.2 Mapping Distance

The biggest shortcoming of the Hausdorff distance metric for measuring the distance

between surfaces is that it makes no use of the point neighborhood information inherent in

the surfaces. The function h(A,B) implicitly assigns to each point of surface A the closest

point of surface B. However, this mapping may have discontinuities. If points i and j are

“neighboring” points on surface A (i.e. there is a path on the surface of length no greater than

ε that connects them), their corresponding points, i´ and j´, on surface B may not be neigh-

boring points. In addition, the mapping implied by h(A,B) is not identical to the mapping

implied by h(B,A).

For the purpose of simplification, we would like to establish a continuous mapping be-

tween the surface’s levels of detail. Ideally, the correspondences described by this mapping

should coincide with a viewer’s perception of which points are “the same” on the surfaces.

Given such a continuous mapping

F: A B→

the mapping distance is defined as

D(F) max F( )= −
∈a A

a a . (5)

Because there are many such mappings, there are many possible mapping distances. The

minimum mapping distance is simply

min
F

D min D(F)=
∈M

, (6)



where M is the set of all such continuous mapping functions. Note that although Dmin and its

associated mapping function may be difficult to compute, all continuous mapping functions

provide an upper bound on Dmin.

6.2 Surface Deviation Algorithms

We now classify several simplification algorithms according to how they measure the sur-

face deviation error of their levels of detail.

6.2.1 Mesh Optimization

[Hoppe et al. 1993] pose the simplification problem in terms of optimizing an energy

function. This function has terms corresponding to number of triangles, surface deviation

error, and a heuristic spring energy. To quantify surface deviation error, they maintain a set of

point samples from the original surface and their closest distance to the simplified surface.

The sum of squares of these distances is used as the surface deviation component of the

energy function. The spring energy term is required because the surface deviation error is

only measured in one direction: it approximates the closest distance from the original surface

to the simplified surface, but not vice versa. Without this term, small portions of the simpli-

fied surface can deviate quite far from the original surface, as long as all the point samples

are near to some portion of the simplified surface.

6.2.2 Vertex Clustering

[Rossignac and Borrel 1993] present a simple and general algorithm for simplification

using vertex clustering. The vertices of each object are clustered using several different sizes

of uniform grid. The surface deviation in this case is a Hausdorff distance and must be less

than or equal to the size of grid cell used in determining the vertex clusters. This is a very

conservative bound, however. A slightly less conservative bound is the maximum distance

from a vertex in the original cluster to the single representative vertex after the cluster is

collapsed. Even this bound is quite conservative in many cases; the actual maximum devia-

tion from the original surface to the simplified surface may be considerably smaller than the

distance the original vertices travel during the cluster operation.



[Luebke and Erikson 1997] take a similar approach, but their system uses an octree in-

stead of a single-resolution uniform grid. This allows them to take a more dynamic approach,

folding and unfolding octree cells at run-time and freely merging nearby objects. The meas-

ure of surface deviation remains the same, but they allow a more flexible choice of error

tolerances in their run-time system. In particular, they use different tolerances for silhouette

and non-silhouette clusters.

6.2.3 Superfaces

[Kalvin and Taylor 1996] present an efficient simplification algorithm based on merging

adjacent triangles to form polygonal patches, simplifying the boundaries of these patches, and

finally retriangulating the patches themselves. This algorithm guarantees a maximum devia-

tion from vertices of the original surface to the simplified surface and from vertices of the

simplified surface to the original surface. Unfortunately, even this bidirectional bound does

not guarantee a maximum deviation between points on the simplified surface and points on

the original surface. For instance, suppose we have two adjacent triangles that share an edge,

forming a non-planar quadrilateral. If we retriangulate this quadrilateral by performing an

edge swap operation, the maximum deviation between these two surfaces is non-zero, even

though their four vertices are unchanged (thus the distance measured from vertex to surface is

zero).

6.2.4 Error Tolerance Volumes

[Guéziec 1995] presents a simplification system that measures surface deviation using

error volumes built around the simplified surface. These volumes are defined by spheres,

specified by their radii, centered at each of the simplified surface’s vertices. We can associate

with any point in a triangle a sphere whose radius is a weighted average of the spheres of the

triangle’s vertices. The error volume of an entire triangle is the union of the spheres of all the

points on the triangle, and the error volume of a simplified surface is the union of the error

volumes of its triangles. As edge collapses are performed, not only are the coordinates of the

new vertex computed, but new sphere radii are computed such that the new error volume

contains the previous error volume. The maximum sphere radius is a bound on the Hausdorff



distance of the simplified surface from the original, and thus provides a bound for surface

deviation in both 3D and 2D (after perspective projection).

6.2.5 Simplification Envelopes

The simplification envelopes technique of [Cohen and Varshney et al. 1996] bounds the

Hausdorff distance between the original and simplified surfaces without actually making

measurements during the simplification process.  For a particular simplification, the input

surface is surrounded by two envelope surfaces, which are constructed to deviate by no more

than a specified tolerance, ε, from the input surface.  As the simplification progresses, the

modified triangles are tested for intersection with these envelopes.  If no intersections occur,

the simplified surface is within distance ε from the input surface.  Similar constructions are

built to constrain error around the borders of bordered surfaces.  By including extensive self-

intersection testing as well, the algorithm provides complete global topology preservation.

This algorithm does an excellent job at generating small-triangle-count surface approxima-

tions for a given error bound.  The biggest limitations are the up-front processing costs

required for envelope construction (for each level of detail to be generated) and the conserva-

tive nature of the envelopes themselves, which do not expand beyond the point of self-

intersection.

6.2.6 Error Quadrics

[Ronfard and Rossignac 1996] describe a fast method for approximating surface devia-

tion. They represent surface deviation error for each vertex as a sum of squared distances to a

set of planes. The initial set of planes for each vertex are the planes of its adjacent faces. As

vertices are merged, the sets of planes are unioned. This metric provides a useful and efficient

heuristic for choosing an ordering of edge collapse operations, but it does not provide any

guarantees about the maximum or average deviation of the simplified surface from the

original.

[Garland and Heckbert 1997] present some improvements over [Ronfard and Rossignac

1996]. The error metric is essentially the same, but they show how to approximate a vertex’s

set of planes by a quadric form (represented by a single 4x4 matrix). These matrices are

simply added to propagate the error as vertices are merged. Using this metric, it is possible to



choose an optimal vertex placement that minimizes the error. In addition, they allow the

merging of vertices that are not joined by an edge, allowing increased topological modifica-

tion. [Erikson and Manocha 1998] further improve this technique by automating the process

of choosing which non-edge vertices to collapse and by encouraging such merging to pre-

serve the local surface area.

6.2.7 Mapping Error

[Bajaj and Schikore 1996] perform simplification using the vertex remove operation, and

measure surface deviation using local, bijective (one-to-one and onto) mappings in the plane

between points on the surface just before and just after the simplification operation. This

approach provides a fairly tight bound on the maximum deviation over all points on the

surface, not just the vertices (as does [Guéziec 1995]) and provides pointwise mappings

between the original and simplified surfaces.

A similar technique is employed by [Cohen et al. 1997], who perform mappings in the

plane for the edge collapse operation.  They present rigorous and efficient techniques for

finding a plane in which to perform the mapping, as well as applying the mapping and

propagating error from operation to operation.  The computed mappings are used not only to

guide the simplification process in its choice of operations, but also to assign texture coordi-

nates to the post-collapse vertices and to control the switching of levels of detail in interac-

tive graphics applications.

6.2.8 Hausdorff Error

[Klein et al. 1996] measure a one-sided Hausdorff distance (with appropriate locality re-

strictions) between the original surface and the simplified surface. By definition, this ap-

proach produces the smallest possible bound on maximum one-sided surface deviation, but

the one-sided formulation does not guarantee a true bound on overall maximum deviation. At

each step of the simplification process, the Hausdorff distance must be measured for each of

the original triangles mapping to the modified portion of the surface. The computation time

for each simplification operation grows as the simplified triangles cover more and more of

the mesh, but of course, there are also fewer and fewer triangles to simplify. [Klein and

Krämer 1997] present an efficient implementation of this algorithm.



6.2.9 Memory-efficient Simplification

[Lindstrom and Turk 1998] demonstrate the surprising result that good simplifications are

possible without measuring anything with respect to the original model.  All errors in this

method are measured purely as incremental changes in the local surface.  The error metric

used preserves the total volume while minimizing volume changes of each triangle.  Another

interesting aspect of this work is that they perform after-the-fact measurements to compare

the “actual” mean and maximum simplification errors of several algorithm implementations.

These measurement use the Metro geometric comparison tool [Cignoni et al. 1996], which

uniformly samples the simplified surface, computes correspondences with the original

surface, and measures the error of the samples.

7. APPEARANCE ATTRIBUTE PRESERVATION

We now classify several algorithms according to how they preserve the appearance attrib-

utes of their input models.

7.1 Scalar Field Deviation

The mapping algorithm presented in [Bajaj and Schikore 1996] allows the preservation of

arbitrary scalar fields across a surface. Such scalar fields are specified at the mesh vertices

and linearly interpolated across the triangles. Their approach computes a bound on the

maximum deviation of the scalar field values between corresponding points on the original

surface and the simplified surface.

7.2 Color Preservation

[Hughes et al. 1996] describes a technique for simplifying colored meshes resulting from

global illumination algorithms. They use a logarithmic function to transform the vertex colors

into a more perceptually linear space before applying simplification. They also experiment

with producing mesh elements that are quadratically- or cubically-shaded in addition to the

usual linearly-shaded elements.

[Hoppe 1996] extends the error metric of [Hoppe et al. 1993] to include error terms for

scalar attributes and discontinuities as well as surface deviation. Like the surface deviation,



the scalar attribute deviation is measured as a sum of squared Euclidean distances in the

attribute space (e.g. the RGB color cube). The distances are again measured between sampled

points on the original surface and their closest points on the simplified surface. This metric is

useful for prioritizing simplification operations in order of increasing error. However, it does

not provide much information about the true impact of attribute error on the final appearance

of the simplified object on the screen. A better metric should incorporate some degree of area

weighting to indicate how the overall illuminance of the final pixels may be affected.

[Erikson and Manocha 1998] present a method for measuring the maximum attribute de-

viation in Euclidean attribute spaces. Associated with each vertex is an attribute volume for

each attribute being measured. The volume is a disc of the appropriate dimension (i.e. an

interval in 1D, a circle in 2D, a sphere in 3D, etc.). Each attribute volumes is initially a point

in the attribute space (an n-disk with radius zero). As vertex pairs are merged, the volumes

grow to contain the volumes of both vertices.

[Garland and Heckbert 1998] extend the algorithm of [Garland and Heckbert 1997] to

consider color and texture coordinate error as well as geometry.  The error quadrics are lifted

to higher dimensions to accommodate the combined attribute spaces (e.g. 3 dimensions for

RGB color and 2 dimensions for texture coordinates).  The associated form matrices grow

quadratically with the dimension, but standard hardware-accelerated rendering models

typically require a dimension of 9 or less.  The error is thus measured and optimized for all

attributes simultaneously.  The method makes the simplifying assumption that the errors in

all these attribute values may be measured as in a Euclidean space.

[Certain et al. 1996] present a method for preserving vertex colors in conjunction with the

wavelet representation for subdivision surfaces [DeRose et al. 1993]. The geometry and color

information are stored as two separate lists of wavelet coefficients. Coefficients may be

added or deleted from either of these lists to adjust the complexity of the surface and its

geometric and color errors. They also use the surface parameterization induced by the subdi-

vision to store colors in texture maps to render as textured triangles for machines that support

texture mapping in hardware.



[Bastos et al. 1997] use texture maps with bicubic filtering to render the complex solu-

tions to radiosity illumination computations. The radiosity computation often dramatically

increases the number of polygons in the input mesh in order to create enough vertices to store

the resulting colors. Storing the colors instead in texture maps removes unnecessary geome-

try, reducing storing requirements and rasterization overhead.

The appearance-preserving simplification technique of [Cohen et al. 1998] is in some

sense a generalization of this “radiosity as textures” work. Colors are stored as texture maps

before the simplification is applied. Mappings are computed as in [Cohen et al. 1997], but

this time in the 2D texture domain, effectively measuring the 3D displacements of a texture

map as a surface is simplified.  Whereas [Bastos et al. 1997] reduces geometry complexity to

that of the pre-radiositized mesh, [Cohen et al. 1998] simplify complex geometry much

farther, quantifying the distortions caused by the simplification of non-planar, textured

surfaces.  [Cignoni et al. 98] describe a method for compactly storing attribute values into

map structures that are customized to a particular simplified mesh.

7.3 Normal Vector Preservation

[Xia et al. 1997] associate a cone of normal vectors with each vertex during their simpli-

fication preprocess. These cones initially have an angle of zero, and grow to contain the

cones of the two vertices merged in an edge collapse. Their run-time, dynamic simplification

scheme uses this range of normals and the light direction to compute a range of reflectance

vectors. When this range includes the viewing direction, the mesh is refined, adapting the

simplification to the specular highlights. The results of this approach are visually quite

compelling, though they do not allow increased simplification of the highlight area as it gets

smaller on the screen (i.e. as the object gets farther from the viewpoint).

[Klein 1998] maintains similar information about the cone of normal deviation associated

with each vertex. The refinement criterion takes into account the spread of reflected normals

(i.e. the specular exponent, or shininess) in addition to the reflectance vectors themselves.

Also, refinement is performed in the neighborhood of silhouettes with respect to the light

sources as well as specular highlights. Again, this normal deviation metric does not allow



increased simplification in the neighborhood of the highlights and light silhouettes as the

object gets smaller on the screen.

[Cohen et al. 1998] apply their appearance-preserving technique to normals as well as

colors by storing normal vectors in normal maps. Figure 11 shows a view of a complex

“armadillo” model. Applying the appearance-preserving algorithm to this model generates the

simplified versions of Figure 12 and Figure 13, in which it is nearly impossible to distinguish

the simplifications from the original.  Compared this to the bunnies in Figure 3 and Figure 4.

Although the positions of the surfaces are preserved quite well, as evidenced by the similarity

of the silhouettes of the bunnies, the shading makes it quite easy to tell which bunnies have

been simplified and which have not (i.e. the appearance has not been totally preserved).

The appearance-preserving approach to normal preservation has the advantage that the

normal values need not be considered in the simplification process – only texture distortion

error constrains the simplification process.  In fact, the error in the resulting images can be

characterized entirely by the number of pixels of deviation of the textured surface on the

screen. The major disadvantage to this approach is that it assumes a per-pixel lighting model

is applied to shade the normal-mapped triangles.  Per-pixel lighting is still too computation-

ally expensive for most graphics hardware, though support for such lighting is making its way

into standard graphics APIs such as OpenGL.



Figure 11: “Armadillo” model: 249,924 triangles

249,924 triangles 7,809 triangles

Figure 12: Medium-sized “armadillos”

249,924 triangles 975 triangles

Figure 13: Small-sized “armadillos”



8. CONCLUSIONS

As is the case for many classes of geometric algorithms, there does not seem to be any

single best simplification algorithm or scheme.  An appropriate scheme depends not only on

the characteristics of the input models, but also the final application to which the multi-

resolution output will be applied.

For poorly-behaved input data (mostly non-manifold or triangle soups), the vertex clus-

tering algorithms [Rossignac and Borrel 1992], [Luebke and Erikson 1997] should yield the

fastest and most painless success.  For cleaner input data, one of the many methods which

respect topology will likely produce more appealing results.

When even pre-computation time is of the essence, a fast algorithm such as [Garland and

Heckbert 1997] may be appropriate, while applications required better-controlled visual

fidelity should invest some extra pre-computation time in an algorithm such as [Cohen et al.

1998], [Guéziec 1995], or [Hoppe 1996], to achieve guaranteed or at least higher quality.

For applications and machines with extra processing power to spare, dynamic level of

detail techniques such as [Hoppe 1997] and [Luebke and Erikson 1997] can provide smooth

level-of-detail transitions with minimal triangle counts.  However, for applications requiring

maximal triangle throughput (including display lists) or need to actually employ their CPU(s)

for application-related processing, static levels of detail (possibly with geomorphs between

levels of detail) are often preferable (they also add less complexity to application code).

The construction and use of levels of detail have become essential tools for accelerating

the rendering process.  The field has now reached a level of maturity at which there is a rich

“bag of tricks” from which to choose when considering the use of levels of detail for a

particular application.  Making sense of the available techniques as well as when and how

well they work is perhaps the next step towards answering the question, “What is a good

simplification?”, both statically, and over the course of an interactive application.
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Abstract
We present a new algorithm for appearance-preserving simplifi-
cation. Not only does it generate a low-polygon-count approxi-
mation of a model, but it also preserves the appearance. This is
accomplished for a particular display resolution in the sense that
we properly sample the surface position, curvature, and color
attributes of the input surface. We convert the input surface to a
representation that decouples the sampling of these three attrib-
utes, storing the colors and normals in texture and normal maps,
respectively. Our simplification algorithm employs a new texture
deviation metric, which guarantees that these maps shift by no
more than a user-specified number of pixels on the screen. The
simplification process filters the surface position, while the run-
time system filters the colors and normals on a per-pixel basis. We
have applied our simplification technique to several large models
achieving significant amounts of simplification with little or no
loss in rendering quality.

CR Categories: I.3.5: Object hierarchies,  I.3.7: Color, shad-
ing, shadowing, and texture

Additional Keywords: simplification, attributes, parameteri-
zation, color, normal, texture, maps

1 INTRODUCTION
Simplification of polygonal surfaces has been an active area of
research in computer graphics. The main goal of simplification is
to generate a low-polygon-count approximation that maintains the
high fidelity of the original model. This involves preserving the
model’s main features and overall appearance. Typically, there are
three appearance attributes that contribute to the overall appear-
ance of a polygonal surface:

1. Surface position, represented by the coordinates of the
polygon vertices.

2. Surface curvature, represented by a field of normal
vectors across the polygons.

3. Surface color, also represented as a field across the
polygons.

The number of samples necessary to represent a surface accurately
depends on the nature of the model and its area in screen pixels
(which is related to its distance from the viewpoint). For a
simplification algorithm to preserve the appearance of the input
surface, it must guarantee adequate sampling of these three
attributes. If it does, we say that it has preserved the appearance
with respect to the display resolution.
                                                                
 e-mail: {cohenj,dm}@cs.unc.edu, olano@engr.sgi.com
WWW: http://www.cs.unc.edu/~geom/APS

The majority of work in the field of simplification has focused
on surface approximation algorithms. These algorithms bound the
error in surface position only. Such bounds can be used to
guarantee a maximum deviation of the object’s silhouette in units
of pixels on the screen. While this guarantees that the object will
cover the correct pixels on the screen, it says nothing about the
final colors of these pixels.

Of the few simplification algorithms that deal with the remain-
ing two attributes, most provide some threshold on a maximum or
average deviation of these attribute values across the model.
While such measures do guarantee adequate sampling of all three
attributes, they do not generally allow increased simplification as
the object becomes smaller on the screen. These threshold metrics
do not incorporate information about the object’s distance from
the viewpoint or its area on the screen. As a result of these metrics
and of the way we typically represent these appearance attributes,
simplification algorithms have been quite restricted in their ability
to simplify a surface while preserving its appearance.

1.1 Main Contribution
We present a new algorithm for appearance-preserving simplifi-
cation. We convert our input surface to a decoupled representa-
tion. Surface position is represented in the typical way, by a set of
triangles with 3D coordinates stored at the vertices. Surface colors
and normals are stored in texture and normal maps, respectively.
These colors and normals are mapped to the surface with the aid
of a surface parameterization, represented as 2D texture coordi-
nates at the triangle vertices.

The surface position is filtered using a standard surface ap-
proximation algorithm that makes local, complexity-reducing
simplification operations (e.g. edge collapse, vertex removal, etc.).
The color and normal attributes are filtered by the run-time system
at the pixel level, using standard mip-mapping techniques [1].

Because the colors and normals are now decoupled from the
surface position, we employ a new texture deviation metric, which
effectively bounds the deviation of a mapped attribute value’s
position from its correct position on the original surface. We thus
guarantee that each attribute is appropriately sampled and mapped
to screen-space. The deviation metric necessarily constrains the
simplification algorithm somewhat, but it is much less restrictive
than retaining sufficient tessellation to accurately represent colors
and normals in a standard, per-vertex representation. The preser-
vation of colors using texture maps is possible on all current
graphics systems that supports real-time texture maps. The
preservation of normals using normal maps is possible on proto-
type machines today, and there are indications that hardware
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Figure 1: Bumpy Torus Model. Left: 44,252 triangles
full resolution mesh. Middle and Right: 5,531 triangles,
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support for real-time normal maps will become more widespread
in the next several years.

One of the nice properties of this approach is that the user-
specified error tolerance, ε, is both simple and intuitive; it is a
screen-space deviation in pixel units. A particular point on the
surface, with some color and some normal, may appear to shift by
at most ε pixels on the screen.

We have applied our algorithm to several large models. Figure
1 clearly shows the improved quality of our appearance-
preserving simplification technique over a standard surface
approximation algorithm with per-vertex normals. By merely
controlling the switching distances properly, we can discretely
switch between a few statically-generated levels of detail (sampled
from a progressive mesh representation) with no perceptible
artifacts. Overall, we are able to achieve a significant speedup in
rendering large models with little or no loss in rendering quality.

1.2 Paper Organization
In Section 2, we review the related work from several areas.
Section 3 presents an overview of our appearance-preserving
simplification algorithm. Sections 4 through 6 describe the
components of this algorithm, followed by a discussion of our
particular implementation and results in Section 7. Finally, we
mention our ongoing work and conclude in Section 8.

2 RELATED WORK
Research areas related to this paper include geometric levels-of-
detail, preservation of appearance attributes, and map-based
representations. We now briefly survey these.

2.1 Geometric Levels-Of-Detail
Given a polygonal model, a number of algorithms have been
proposed for generating levels-of-detail. These methods differ
according to the local or global error metrics used for simplifica-
tion and the underlying data structures or representations. Some
approaches based on vertex clustering [2, 3] are applicable to all
polygonal models and do not preserve the topology of the original
models. Other algorithms assume that the input model is a valid
mesh. Algorithms based on vertex removal [4, 5] and local error
metrics have been proposed by [6-10]. Cohen et al. [11] and Eck
et al. [12] have presented algorithms that preserve topology and
use a global error bound. Our appearance-preserving simplifica-
tion algorithm can be combined with many of these.

Other simplification algorithms include decimation techniques
based on vertex removal [4], topology modification [13], and
controlled simplification of genus [14]. All of these algorithms
compute static levels-of-detail. Hoppe [15] has introduced an
incremental representation, called the progressive mesh, and
based on that representation view-dependent algorithms have been
proposed by [16, 17]. These algorithms use different view-
dependent criteria like local illumination, screen-space surface
approximation error, and silhouette edges to adaptively refine the
meshes. Our appearance preserving simplification algorithm
generates a progressive mesh, which can be used by these view-
dependent algorithms.

2.2 Preserving Appearance Attributes
Bajaj and Schikore [18] have presented an algorithm to simplify
meshes with associated scalar fields to within a given tolerance.
Hughes et al. [19] have presented an algorithm to simplify
radiositized meshes. Erikson and Manocha[20] grow error
volumes for appearance attributes as well as geometry. Many
algorithms based on multi-resolution analysis have been proposed
as well. Schroeder and Sweldens [21] have presented algorithms
for simplifying functions defined over a sphere. Eck et al. [12]

apply multi-resolution analysis to simplify arbitrary meshes, and
Certain et al. [22] extend this to colored meshes by separately
analyzing surface geometry and color. They make use of texture
mapping hardware to render the color at full resolution. It may be
possible to extend this approach to handle other functions on the
mesh. However, algorithms based on vertex removal and edge
collapses [11, 15] have been able to obtain more drastic simplifi-
cation (in terms of reducing the polygon count) and produce
better looking simplifications [15].

Hoppe [15] has used an optimization framework to preserve
discrete and scalar surface appearance attributes. Currently, this
algorithm measures a maximum or average deviation of the scalar
attributes across the model. Our approach can be incorporated
into this comprehensive optimization framework to preserve the
appearance of colors and normals, while allowing continued
simplification as an object's screen size is reduced.

2.3 Map-based Representations
Texture mapping is a common technique for defining color on a
surface. It is just one instance of mapping, a general technique for
defining attributes on a surface. Other forms of mapping use the
same texture coordinate parameterization, but with maps that
contain something other than surface color. Displacement maps
[23] contain perturbations of the surface position. They are
typically used to add surface detail to a simple model. Bump maps
[24] are similar, but instead give perturbations of the surface
normal. They can make a smooth surface appear bumpy, but will
not change the surface’s silhouette. Normal maps [25] can also
make a smooth surface appear bumpy, but contain the actual
normal instead of just a perturbation of the normal.

Texture mapping is available in most current graphics systems,
including workstations and PCs. We expect to see bump mapping
and similar surface shading techniques on graphics systems in the
near future [26]. In fact, many of these mapping techniques are
already possible using the procedural shading capabilities of
PixelFlow[27].

Several researchers have explored the possibility of replacing
geometric information with texture. Kajiya first introduced the
"hierarchy of scale" of geometric models, mapping, and light-
ing[28]. Cabral et. al. [29] addressed the transition between bump
mapping and lighting effects. Westin et. al. [30] generated BRDFs
from a Monte-Carlo ray tracing of an idealized piece of surface.
Becker and Max [31] handle transitions from geometric detail in
the form of displacement maps to shading in the form of bump
maps. Fournier [25] generates maps with normal and shading
information directly from surface geometry. Krishnamurthy and
Levoy [32] fit complex, scanned surfaces with a set of smooth B-
spline patches, then store some of the lost geometric information
in a displacement map or bump map. Many algorithms first
capture the geometric complexity of a scene in an image-based
representation by rendering several different views and then
render the scene using texture maps [33-36].
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Figure 2: Components of an appearance-preserving
simplification system.



3 OVERVIEW
We now present an overview of our appearance-preserving
simplification algorithm. Figure 2 presents a breakdown of the
algorithm into its components. The input to the algorithm is the
polygonal surface, M0, to be simplified. The surface may come
from one of a wide variety of sources, and thus may have a variety
of characteristics. The types of possible input models include:

• CAD models, with per-vertex normals and a single color
• Radiositized models, with per-vertex colors and no normals
• Scientific visualization models, with per-vertex normals and

per-vertex colors
• Textured models, with texture-mapped colors, with or

without per-vertex normals

To store the colors and normals in maps, we need a parameteriza-
tion of the surface, F0(X): M0→P, where P is a 2D texture domain
(texture plane), as shown in Figure 3. If the input model is already
textured, such a parameterization comes with the model. Other-
wise, we create one and store it in the form of per-vertex texture
coordinates. Using this parameterization, per-vertex colors and
normals are then stored in texture and normal maps.

The original surface and its texture coordinates are then fed to
the surface simplification algorithm. This algorithm is responsible
for choosing which simplification operations to perform and in
what order. It calls our texture deviation component to measure
the deviation of the texture coordinates caused by each proposed
operation. It uses the resulting error bound to help make its
choices of operations, and stores the bound with each operation in
its progressive mesh output.

We can use the resulting progressive mesh with error bounds to
create a static set of levels of detail with error bounds, or we can
use the progressive mesh directly with a view-dependent simplifi-
cation system at run-time. Either way, the error bound allows the
run-time system to choose or adjust the tessellation of the models
to meet a user-specified tolerance. It is also possible for the user
to choose a desired polygon count and have the run-time system
increase or decrease the error bound to meet that target.

4 REPRESENTATION CONVERSION
Before we apply the actual simplification component of our
algorithm, we perform a representation conversion (as shown in
Figure 2). The representation we choose for our surface has a
significant impact on the amount of simplification we can perform
for a given level of visual fidelity. To convert to a form which
decouples the sampling rates of the colors and normals from the
sampling rate of the surface, we first parameterize the surface,
then store the color and normal information in separate maps.

4.1 Surface Parameterization
To store a surface's color or normal attributes in a map, the
surface must first have a 2D parameterization. This function,
F0(X): M0→P, maps points, X, on the input surface, M0, to points,
x,∗ on the texture plane, P (see Figure 3). The surface is typically
decomposed into several polygonal patches, each with its own
parameterization. The creation of such parameterizations has been
an active area of research and is fundamental for shape transfor-
mation, multi-resolution analysis, approximation of meshes by
NURBS, and texture mapping. Though we do not present a new
algorithm for such parameterization here, it is useful to consider

                                                                
∗ Capital letters (e.g. X) refer to points in 3D, while lowercase letters
(e.g. x) refer to points in 2D.

the desirable properties of such a parameterization for our algo-
rithm. They are:

1. Number of patches: The parameterization should use as few
patches as possible. The triangles of the simplified surface
must each lie in a single patch, so the number of patches places
a bound on the minimum mesh complexity.

2. Vertex distribution: The vertices should be as evenly distrib-
uted in the texture plane as possible. If the parameterization
causes too much area compression, we will require a greater
map resolution to capture all of our original per-vertex data.

3. One-to-one mapping: The mapping from the surface to the
texture plane should be one-to-one. If the surface has folds in
the texture plane, parts of the texture will be incorrectly stored
and mapped back to the surface

Our particular application of the parameterization makes us
somewhat less concerned with preserving aspect ratios than some
other applications are. For instance, many applications apply
F-1(x) to map a pre-synthesized texture map to an arbitrary
surface. In that case, distortions in the parameterization cause the
texture to look distorted when applied to the surface. However, in
our application, the color or normal data originates on the surface
itself. Any distortion created by applying F(X) to map this data
onto P is reversed when we apply F-1(x) to map it back to M.

Algorithms for computing such parameterizations have been
studied in the computer graphics and graph drawing literature.

Computer Graphics: In the recent computer graphics litera-
ture, [12, 37, 38] use a spring system with various energy terms to
distribute the vertices of a polygonal patch in the plane. [12, 32,
38, 39] provide methods for subdividing surfaces into separate
patches based on automatic criteria or user-guidance. This body of
research addresses the above properties one and two, but unfortu-
nately, parameterizations based on spring-system algorithms do
not generally guarantee a one-to-one mapping.

Graph Drawing: The field of graph drawing addresses the
issue of one-to-one mappings more rigorously. Relevant topics
include straight-line drawings on a grid [40] and convex straight-
line drawings [41]. Battista et al. [42] present a survey of the
field. These techniques produce guaranteed one-to-one mappings,
but the necessary grids for a graph with V vertices are worst case
(and typically) O(V) width and height, and the vertices are
generally unevenly spaced.

To break a surface into polygonal patches, we currently apply
an automatic subdivision algorithm like that presented in [12].
Their application requires a patch network with more constraints
than ours. We can generally subdivide the surface into fewer
patches. During this process, which grows Voronoi-like patches,
we simply require that each patch not expand far enough to touch
itself. To produce the parameterization for each patch, we employ

Mi-1 Mi
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Fi-1 Fi
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Figure 3: A look at the ith edge collapse. Computing
Vgen determines the shape of the new mesh, Mi. Com-
puting vgen determines the new mapping Fi, to the tex-
ture plane, P.



a spring system with uniform weights. A side-by-side comparison
of various choices of weights in [12] shows that uniform weights
produce more evenly-distributed vertices than some other choices.
For parameterizations used only with one particular map, it is also
possible to allow more area compression where data values are
similar. While this technique will generally create reasonable
parameterizations, it would be better if there were a way to also
guarantee that F(X) is one-to-one, as in the graph drawing
literature.

4.2 Creating Texture and Normal Maps
Given a polygonal surface patch, M0, and its 2D parameterization,
F, it is straightforward to store per-vertex colors and normals into
the appropriate maps using standard rendering software. To create
a map, scan convert each triangle of M0, replacing each of its
vertex coordinates, Vj, with F(Vj), the texture coordinates of the
vertex. For a texture map, apply the Gouraud method for linearly
interpolating the colors across the triangles. For a normal map,
interpolate the per-vertex normals across the triangles instead
(Figure 4).

The most important question in creating these maps is what the
maximum resolution of the map images should be. To capture all
the information from the original mesh, each vertex's data should
be stored in a unique texel. We can guarantee this conservatively
by choosing 1/d x 1/d for our map resolution, where d is the
minimum distance between vertex texture coordinates:

d
i j i j

i j= −
∈ ≠

min ( ) ( )
, ,V V

F V F V
M 0

(1)

If the vertices of the polygonal surface patch happen to be a
uniform sampling of the texture space (e.g. if the polygonal
surface patch was generated from a parametric curved surface
patch), then the issues of scan conversion and resolution are
simplified considerably. Each vertex color (or normal) is simply
stored in an element of a 2D array of the appropriate dimensions,
and the array itself is the map image.

It is possible to trade off accuracy of the map data for run-time
texturing resources by scaling down the initial maps to a lower
resolution.

5 SIMPLIFICATION ALGORITHM
Once we have decomposed the surface into one or more parame-
terized polygonal patches with associated maps, we begin the
actual simplification process. Many simplification algorithms
perform a series of edge collapses or other local simplification
operations to gradually reduce the complexity of the input surface.

The order in which these operations are performed has a large
impact on the quality of the resulting surface, so simplification
algorithms typically choose the operations in order of increasing
error according to some metric. This metric may be local or global
in nature, and for surface approximation algorithms, it provides
some bound or estimate on the error in surface position. The
operations to be performed are typically maintained in a priority
queue, which is continually updated as the simplification pro-
gresses. This basic design is applied by many of the current
simplification algorithms, including [6-8, 15].

To incorporate our appearance-preservation approach into such
an algorithm, the original algorithm is modified to use our texture
deviation metric in addition to its usual error metric. When an
edge is collapsed, the error metric of the particular surface
approximation algorithm is used to compute a value for Vgen, the
surface position of the new vertex (see Figure 3). Our texture
deviation metric is then applied to compute a value for vgen, the
texture coordinates of the new vertex.

For the purpose of computing an edge’s priority, there are sev-
eral ways to combine the error metrics of surface approximation
along with the texture deviation metric, and the appropriate choice
depends on the algorithm in question. Several possibilities for
such a total error metric include a weighted combination of the
two error metrics, the maximum or minimum of the error metrics,
or one of the two error metrics taken alone. For instance, when
integrating with Garland and Heckbert’s algorithm [6], it would
be desirable to take a weighted combination in order to retain the
precedence their system accords the topology-preserving collapses
over the topology-modifying collapses. Similarly, a weighted
combination may be desirable for an integration with Hoppe’s
system [15], which already optimizes error terms corresponding to
various mesh attributes.

The interactive display system later uses the error metrics to
determine appropriate distances from the viewpoint either for
switching between static levels of detail or for collapsing/splitting
the edges dynamically to produce adaptive, view-dependent
tessellations. If the system intends to guarantee that certain
tolerances are met, the maximum of the error metrics is often an
appropriate choice.

6 TEXTURE DEVIATION METRIC
A key element of our approach to appearance-preservation is the
measurement of the texture coordinate deviation caused by the
simplification process. We provide a bound on this deviation, to

Figure 4: A patch from the leg
of an armadillo model and its
associated normal map.

Figure 5: Lion
model.

Figure 6: Texture coordinate deviation and correction
on the lion’s tail. Left: 1,740 triangles full resolution.
Middle and Right: 0.25 mm maximum image deviation.
Middle: 108 triangles, no texture deviation metric.
Right: 434 triangles with texture metric.



be used by the simplification algorithm to prioritize the potential
edge collapses and by the run-time visualization system to choose
appropriate levels of detail based on the current viewpoint. The
lion’s tail in Figure 6 demonstrates the need to measure texture
coordinate deviation. The center figure is simplified by a surface
approximation algorithm without using a texture deviation metric.
The distortions are visible in the areas marked by red circles. The
right tail is simplified using our texture deviation metric and does
not have visible distortions. The image-space deviation bound
now applies to the texture as well as to the surface.

For a given point, X, on simplified mesh Mi, this deviation is
the distance in 3D from X to the point on the input surface with
the same texture coordinates:

Ti i( ) F (F ( ))X X X= − −
0

1 (2)

We define the texture coordinate deviation of a whole triangle to
be the maximum deviation of all the points in the triangle, and
similarly for the whole surface:
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To compute the texture coordinate deviation incurred by an edge
collapse operation, our algorithm takes as input the set of triangles
before the edge collapse and Vgen, the 3D coordinates of the new
vertex generated by the collapse operation. The algorithm outputs
vgen, the 2D texture coordinates for this generated vertex, and a
bound on Ti(∆) for each of the triangles after the collapse.

6.1 Computing New Texture Coordinates
We visualize the neighborhood of an edge to be collapsed in the
texture plane, P, as shown in Figure 3. The boundary of the edge
neighborhood is a polygon in P. The edge collapse causes us to
replace the two vertices of the edge with a single vertex. The 3D
coordinates, Vgen of this generated vertex are provided to us by the
surface approximation algorithm. The first task of the texture
deviation algorithm is to compute vgen, the 2D texture coordinates
of this generated vertex.

For vgen to be valid, it must lie in the convex kernel of our
polygon in the texture plane [43] (see Figure 7). Meeting this
criterion ensures that the set of triangles after the edge collapse
covers exactly the same portion of the texture plane as the set of
triangles before the collapse.

Given a candidate point in the texture plane, we efficiently test
the kernel criterion with a series of dot products to see if it lies on
the inward side of each polygon edge. We first test some heuristic
choices for the texture coordinates – the midpoint of the original
edge in the texture plane or one of the edge vertices. If the
heuristic choices fail we compute a point inside the kernel by
averaging three corners, found using linear programming tech-
niques [43].

6.2 Patch Borders & Continuity
Unlike an interior edge collapse, an edge collapse on a patch
border can change the coverage in the texture plane, either by
cutting off some of texture space or by extending into a portion of
texture space for which we have no map data. Since neither of

these is acceptable, we add additional constraints on the choice of
vgen at patch borders.

We assume that the area of texture space for which we have
map data is rectangular (though the method works for any map
that covers a polygonal area in texture space), and that the edges
of the patch are also the edges of the map. If the entire edge to be
collapsed lies on a border of the map, we restrict vgen to lie on the
edge. If one of the vertices of the edge lies on a corner of the map,
we further restrict vgen to lie at that vertex. If only one vertex is on
the border, we restrict vgen to lie at that vertex. If one vertex of the
edge lies on one border of the map and the other vertex lies on a
different border, we do not allow the edge collapse.

The surface parameterization component typically breaks the
input model into several connected patches. To preserve geomet-
ric and texture continuity across the boundary between them, we
add further restrictions on the simplifications that are performed
along the border. The shared border edges must be simplified on
both patches, with matching choices of Vgen and vgen.

6.3 Measuring Texture Deviation
Texture deviation is a measure of the parametric distortion caused
by the simplification process. We measure this deviation using a
method similar to the one presented to measure surface deviation
in [8]. The main difference is that we now measure the deviation
using our mapping in the texture plane, rather than in the plane of
some planar projection. While [8] presents an overview of this
technique, we present it more formally.

Given the overlay (see Figure 8(a)) in the texture plane, P, of
two simplified versions of the surface, Mi and Mj, we define the
incremental texture deviation between them:

E ( ) F ( ) F ( ),i j i jx x x= −− −1 1 (4)

This is the deviation between corresponding 3D points on the
surfaces, both with texture coordinates, x. Between any two
sequential surfaces, Mi and Mi-1, differing only by an edge col-
lapse, the incremental deviation, Ei,i-1(x), is only non-zero in the
neighborhood of the collapsed edge (i.e. only in the triangles that
actually move).

The edges on the overlay in P partition the region into a set of
convex, polygonal mapping cells (each identified by a dot in
Figure 8(b)). Within each mapping cell, the incremental deviation
function is linear, so the maximum incremental deviation for each
cell occurs at one of its boundary points. Thus, we bound the
incremental deviation using only the deviation at the cell vertices,
vk:

E ( ) max E ( ) max E ( ), , ,i i i i i i k
k

− ∈ − −= =1 1 1P
Px v
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In terms of the incremental deviation, the total texture deviation,
defined in (2) (the distance from points on Mi to corresponding
points on the original surface, M0) is

( ) ( )( )T E Fi i, i=X X0 (6)

We approximate Ei,0(x) using a set of axis-aligned boxes. This
provides a convenient representation of a bound on Ti(X), which

(a) (b)

Figure 7: (a) An invalid choice for vgen in P, causing the
new triangles extend outside the polygon. (b) Valid
choices must lie in the shaded kernel.

Collapsed
Edge

Generated
Vertex

(a) (b)
Figure 8: (a) An overlay in P determines the mapping
between Mi-1 and Mi. (b) A set of polygonal mapping
cells, each containing a dot.



we can update from one simplified mesh to the next without
having to refer to the original mesh. Each triangle, ∆k in Mi, has its
own axis-aligned box, bi,k such that at every point on the triangle,
the Minkowski sum of the 3D point with the box gives a region
that contains the point on the original surface with the same
texture coordinates.

( )( )∀ ∈ ∈ ⊕−X X X∆k i i k, bF F ,0
1 (7)

Figure 9(a) shows an original surface (curve) in black and a
simplification of it, consisting of the thick blue and green lines.
The box associated with the blue line, bi,0, is shown in blue, while
the box for the green line, bi,1, is shown in green. The blue box
slides along the blue line; at every point of application, the point
on the base mesh with the same texture coordinate is contained
within the translated box. For example, one set of corresponding
points is shown in red, with its box also in red.

From (2) and (7), we produce T~i(X), a bound on the total tex-
ture deviation, Ti(X). This our texture deviation output.
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T~i(X) is the distance from X to the farthest corner of the box at X.
This will always bound the distance from X to F 0

-1(Fi(X)). The
maximum deviation over an edge collapse neighborhood is the
maximum T~i(X) for any cell vertex.

The boxes, bi,k, are the only information we keep about the
position of the original mesh as we simplify. We create a new set
of boxes, bi+1,k’, for mesh Mi+1 using an incremental computation
(described in Figure 10). Figure 9(b) shows the propagation from
Mi to Mi+1. The blue and green lines are simplified to the pink line.
The new box, bi+1,0 is constant as it slides across the pink line. The
size and offset is chosen so that, at every point of application, the
pink box, bi+1,0, contains the corresponding blue or green boxes,
bi,0 or bi,1.

If X is a point on Mi in triangle k, and Y is the point with the
same texture coordinate on Mi+1, the containment property of (7)
holds:
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For example, all three red dots Figure 9(b) have the same texture
coordinates. The red point on Mo is contained in the smaller red
box, X ⊕ bi,0, which is contained in the larger red box, Y ⊕ bi+1,0.

Because each mapping cell in the overlay between Mi and Mi+1
is linear, we compute the sizes of the boxes, bi+1,k’, by considering

only the box correspondences at cell vertices. In Figure 9(b), there
are three places we must consider. If the magenta box contains the
blue and green boxes in all three places, it will contain them
everywhere.

Together, the propagation rules, which are simple to imple-
ment, and the box-based approximation to the texture deviation,
provide the tools we need to efficiently provide a texture devia-
tion for the simplification process.

7 IMPLEMENTATION AND RESULTS
In this section we present some details of our implementation of
the various components of our appearance-preserving simplifica-
tion algorithm. These include methods for representation conver-
sion, simplification and, finally, interactive display.

7.1 Representation Conversion
We have applied our technique to several large models, including
those listed in Table 1. The bumpy torus model (Figure 1) was
created from a parametric equation to demonstrate the need for
greater sampling of the normals than of the surface position. The
lion model (Figure 5) was designed from NURBS patches as part
of a much larger garden environment, and we chose to decorate it
with a marble texture (and a checkerboard texture to make texture
deviation more apparent in static images). Neither of these models
required the computation of a parameterization. The armadillo
(Figure 12) was constructed by merging several laser-scanned
meshes into a single, dense polygon mesh. It was decomposed
into polygonal patches and parameterized using the algorithm
presented in [32], which eventually converts the patches into a
NURBS representation with associated displacement maps.

Because all these models were not only parameterized, but
available in piecewise-rational parametric representations, we
generated polygonal patches by uniformly sampling these repre-
sentations in the parameter space. We chose the original tessella-
tion of the models to be high enough to capture all the detail
available in their smooth representations. Due to the uniform
sampling, we were able to use the simpler method of map creation
(described in Section 4.2), avoiding the need for a scan-
conversion process.

7.2 Simplification
We integrated our texture deviation metric with the successive
mapping algorithm for surface approximation [8]. The error
metric for the successive mapping algorithm is simply a 3D
surface deviation. We used this deviation only in the computation
of Vgen. Our total error metric for prioritizing edges and choosing
switching distances is just the texture deviation. This is sensible
because the texture deviation metric is also a measure of surface
deviation, whose particular mapping is the parameterization.
Thus, if the successive mapping metric is less than the texture
deviation metric, we must apply the texture deviation metric,
because it is the minimum bound we know that guarantees the
bound on our texture deviation. On the other hand, if the succes-
sive mapping metric is greater than the texture deviation metric,

Figure 9: 2D illustration of the box approximation to
total deviation error. a) A curve has been simplified to
two segment, each with an associated box to bound the
deviation. b) As we simplify one more step, the ap-
proximation is propagated to the newly created seg-
ment.

PropagateError():
foreach cell vertex, v

foreach triangle, Told, in Mi-1 touching v
foreach triangle, Tnew, in Mi touching v

PropagateBox(v, Told, Tnew)

PropagateBox(v, Told, Tnew):
Pold = Fi-1

-1(v), Pnew = Fi
-1(v)

Enlarge Told.box so that Told.box applied at
Pold contains Tnew.box applied at Pnew

Figure 10: Pseudo-code for the propagation of deviation
error from mesh Mi-1 to mesh Mi.



the texture deviation bound is still sufficient to guarantee a bound
on both the surface deviation and the texture.

To achieve a simple and efficient run-time system, we apply a
post-process to convert the progressive mesh output to a static set
of levels of detail, reducing the mesh complexity by a factor of
two at each level.

Our implementation can either treat each patch as an independ-
ent object or treat a connected set of patches as one object. If we
simplify the patches independently, we have the freedom to switch
their levels of detail independently, but we will see cracks be-
tween the patches when they are rendered at a sufficiently large
error tolerance. Simplifying the patches together allows us to
prevent cracks by switching the levels of detail simultaneously.

Table 1 gives the computation time to simplify several models,

as well as the resolution of each map image. Figure 11 and Figure
12 show results on the armadillo model. It should be noted that
the latter figure is not intended to imply equal computational costs
for rendering models with per-vertex normals and normal maps.
Simplification using the normal map representation provides
measurable quality and reduced triangle overhead, with an
additional overhead dependent on the screen resolution.

7.3 Interactive Display System
We have implemented two interactive display systems: one on top
of SGI’s IRIS Performer library, and one on top of a custom
library running on a PixelFlow system. The SGI system supports
color preservation using texture maps, and the PixelFlow system
supports color and normal preservation using texture and normal
maps, respectively. Both systems apply a bound on the distance
from the viewpoint to the object to convert the texture deviation
error in 3D to a number of pixels on the screen, and allow the user
to specify a tolerance for the number of pixels of deviation. The
tolerance is ultimately used to choose the primitives to render
from among the statically generated set of levels of detail.

Our custom shading function on the PixelFlow implementation
performs a mip-mapped look-up of the normal and applies a

Model Patches Input Tris Time Map Res.
Torus 1 44,252 4.4 512x128
Lion 49 86,844 7.4 N.A.

Armadillo 102 2,040,000 190 128x128

Table 1: Several models used to test appearance-
preserving simplification. Simplification time is in min-
utes on a MIPS R10000 processor.

Figure 11: Levels of detail of the armadillo model
shown with 1.0 mm maximum image deviation. Trian-
gle counts are: 7,809, 3,905, 1,951, 975, 488

249,924 triangles 62,480 triangles 7,809 triangles 975 triangles
0.05 mm max image deviation 0.25 mm max image deviation 1.3 mm max image deviation 6.6 mm max image deviation

Figure 12: Close-up of several levels of detail of the armadillo model. Top: normal maps Bottom: per-vertex normals



Phong lighting model to compute the output color of each pixel.
The current implementation looks up normals with 8 bits per
component, which seems sufficient in practice (using [44])

8 ONGOING WORK AND CONCLUSIONS
There are several directions to pursue to improve our system for
appearance-preserving simplification. We would like to experi-
ment more with techniques to generate parameterizations that
allow efficient representations of the mapped attributes as well as
guarantee a one-to-one mapping to the texture plane.

It would be nice for the simplification component to do a better
job of optimizing the 3D and texture coordinates of the generated
vertex for each edge collapse, both in 3D and the texture plane.
Also, it may be interesting to allow the attribute data of a map to
influence the error metric. We would also like to integrate our
technique with a simplification algorithm like [6] that deals well
with imperfect input meshes and allows some topological
changes. Finally, we want to display our resulting progressive
meshes in a system that performs dynamic, view-dependent
management of LODs.

Our current system demonstrates the feasibility and desirability
of our approach to appearance-preserving simplification. It
produces high-fidelity images using a small number of high-
quality triangles. This approach should complement future
graphics systems well as we strive for increasingly realistic real-
time computer graphics.
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Abstract:
We present the use of mapping functions to automatically

generate levels of detail with known error bounds for polygo-
nal models. We develop a piece-wise linear mapping function
for each simplification operation and use this function to mea-
sure deviation of the new surface from both the previous level
of detail and from the original surface. In addition, we use the
mapping function to compute appropriate texture coordinates if
the original map has texture coordinates at its vertices. Our over-
all algorithm uses edge collapse operations. We present rigorous
procedures for the generation of local planar projections as well
as for the selection of a new vertex position for the edge collapse
operation. As compared to earlier methods, our algorithm is able
to compute tight error bounds on surface deviation and produce
an entire continuum of levels of detail with mappings between
them. We demonstrate the effectiveness of our algorithm on
several models: a Ford Bronco consisting of over 300 parts and
70 000 triangles, a textured lion model consisting of 49 parts
and 86 000 triangles, and a textured, wrinkled torus consisting
of 79 000 triangles.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
Curve, surface, solid, and object representations.
Additional Key Words and Phrases: model simplification,
levels-of-detail, surface approximation, projection, linear pro-
gramming.

1 Introduction
Automatic generation of levels of detail for polygonal data sets
has become a task of fundamental importance for real-time ren-
dering of large polygonal environments on current graphics sys-
tems. Many detailed models are obtained by scanning physical
objects using range scanning systems or created by modeling
systems. Besides surface geometry these models, at times, con-
tain additional information such as normals, texture coordinates,
color etc. As the field of model simplification continues to ma-
ture, many applications desire high quality simplifications, with
tight error bounds of various types across the surface being sim-

plified.
Most of the literature on simplification has focused purely

on surface approximation. Many of these techniques give guar-
anteed error bounds on the deviation of the simplified surface
from the original surface. Such bounds are useful for providing
a measure of the screen-space deviation from the original sur-
face. A few techniques have been proposed to preserve other
attributes such as color or overall appearance. However, they
are not able to give tight error bounds on these parameters. At
times the errors accumulated in all these domains may cause vis-
ible artifacts, even though the surface deviation itself is properly
constrained. We believe the most promising approach to mea-
suring and bounding these attribute errors is to have a mapping
between the original surface and the simplified surface. With
such a mapping in hand, we are free to devise suitable methods
for measuring and bounding each type of error.

Main Contribution: In this paper we present a new simpli-
fication algorithm, which computes a piece-wise linear mapping
between the original surface and the simplified surface. The al-
gorithm uses the edge collapse operation due to its simplicity,
local control, and suitability for generating smooth transitions
between levels of detail. We also present rigorous and complete
algorithms for collapsing an edge to a vertex such that there are
no local self-intersections. The algorithm keeps track of surface
deviation from both the current level of detail as well as from the
original surface. The main features of our approach are:

1. Successive Mapping: This mapping between the levels of
detail is a useful tool. We currently use the mapping in
several ways: to measure the distance between the levels
of detail before an edge collapse, to choose a location for
the generated vertex that minimizes this distance, to accu-
mulate an upper bound on the distance between the new
level of detail and the original surface, and to map surface
attributes to the simplified surface.

2. Tight Error Bounds: Our approach can measure and min-
imize the error for surface deviation and is extendible to
other attributes. These error bounds give guarantees on the
shape of the simplified object and screen-space deviation.

3. Generality: Portions of our approach can be easily com-
bined with other algorithms, such as simplification en-
velopes [5]. Furthermore, the algorithm for collapsing an
edge into a vertex is rather general and does not restrict the
vertex to lie on the original edge.

4. Surface Attributes: Given an original surface with texture
coordinates, our algorithm uses the successive mapping to
compute appropriate texture coordinates for the simplified
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mesh. Other attributes such as color or surface normal can
also be maintained with the mapping.

5. Continuum of Levels of Details: The algorithm incre-
mentally produces an entire spectrum of levels-of-details
as opposed to a few discrete levels. Furthermore, the algo-
rithm incrementally stores the error bounds for each level.
Thus, the simplified model can be stored as a progressive
mesh [12] if desired.

The algorithm has been successfully applied to a number of
models. These models consist of hundreds of parts and tens of
thousands of polygons, including a Ford Bronco with 300 parts,
a textured lion model and a textured wrinkled torus.

Organization: The rest of the paper is organized as follows.
In Section 2, we survey related work on model simplification.
We give an overview of our algorithm in Section 3. Section 4
discusses the types of mappings computed by the algorithm and
describes the algorithm in detail. In Section 5, we present ap-
plications of these mapping. The implementation is discussed in
Section 6 and its performance in Section 7. Finally, in Section 8
we compare our approach to other algorithms.

2 Previous Work
Automatic simplification has been studied in both the compu-
tational geometry and computer graphics literature for several
years [1, 3, 5, 6, 7, 8, 9, 10, 12, 11, 15, 16, 17, 18, 19, 21, 22, 24].
Some of the earlier work by Turk [22] and Schroeder [19] em-
ployed heuristics based on curvature to determine which parts
of the surface to simplify to achieve a model with the desired
polygon count. Other work include that of Rossignac and Borrel
[16] where vertices close to each other are clustered and a vertex
is generated to represent them. This algorithm has been used in
the Brush walkthrough system [18]. A dynamic view-dependent
simplification algorithm has been presented in [24].

Hoppe et al. [12, 11] posed the model simplification prob-
lem into a global optimization framework, minimizing the least-
squares error from a set of point-samples on the original surface.
Later, Hoppe extended this framework to handle other scalar at-
tributes, explicitly recognizing the distinction between smooth
gradients and sharp discontinuities. He also introduced the pro-
gressive mesh [12], which is essentially a stored sequence of sim-
plification operations, allowing quick construction of any desired
level of detail along the continuum of simplifications. However,
the algorithm in [12] provides no guaranteed error bounds.

There is considerable literature on model simplification us-
ing error bounds. Cohen and Varshney et al. [5, 23] have used
envelopes to preserve the model topology and obtain tight error
bounds for a simple simplification. But they do not produce an
entire spectrum of levels of detail. Guéziec [9] has presented
an algorithm for computing local error bounds inside the sim-
plification process by maintaining tolerance volumes. However,
it does not produce a suitable mapping between levels of de-
tail. Bajaj and Schikore [1, 17] have presented an algorithm for
producing a mapping between approximations and measure the
error of scalar fields across the surface based on vertex-removals.
Some of the results presented in this paper extend this work non-
trivially to edge collapse operation. A detailed comparison with
these approaches is presented in Section 8.

An elegant solution to the polygon simplification problem has
been presented in [7, 8] where arbitrary polygonal meshes are
first subdivided into patches with subdivision connectivity and
then multiresolution wavelet analysis is used over each patch.
These methods preserve global topology, give error bounds on

the simplified object and provide a mapping between levels of
detail. In [3] they have been further extended to handle colored
meshes. However, the initial mesh is not contained in the level
of detail hierarchy, but can only be recovered to within an -
tolerance. In some cases this is undesirable. Furthermore, the
wavelet based approach can be somewhat conservative and for a
given error bound, algorithms based on vertex removal and edge
collapses [5, 12] have been empirically able to simplify more (in
terms of reducing the polygon count).

3 Overview
Our simplification approach may be seen as a high-level algo-
rithm which controls the simplification process with a lower-level
cost function based on local mappings. Next we describe this
high-level control algorithm and the idea of using local mappings
for cost evaluation.

3.1 High-level Algorithm
At a broad level, our simplification algorithm is a generic greedy
algorithm. Our simplification operation is the edge collapse.
We initialize the algorithm by measuring the cost of all possible
edge collapses, then we perform the edge collapses in order
of increasing cost. The cost function tries to minimize local
error bounds on surface deviation and other attributes. After
performing each edge collapse, we locally re-compute the cost
functions of all edges whose neighborhoods were affected by
the collapse. This process continues until none of the remaining
edges can be collapsed.

The output of our algorithm is the original model plus an
ordered list of edge collapses and their associated cost functions.
This progressive mesh [12] represents an entire continuum of
levels of detail for the surface. A graphics application can choose
to dynamically create levels of detail or to statically allocate a set
of levels of detail to render the model with the desired quality or
speed-up.

3.2 Local Mappings
The edge collapse operation we perform to simplify the surface
contracts an edge (the collapsed edge) to a single, new vertex
(the generated vertex). Most of the earlier algorithms position
the generated vertex to one of the end vertices or mid-point of
the collapse edge. However, these choices for generated vertex
position may not minimize the deviation or error bound and can
result in a local self-intersection. We choose a vertex position
in two dimensions to avoid self-intersections and optimize in
the third dimension to minimize error. This optimization of the
generated vertex position and measurement of the error are the
keys to simplifying the surface without introducing significant
error.

For each edge collapse, we consider only the neighborhood
of the surface that is modified by the operation (i.e. those faces,
edges and vertices adjacent to the collapsed edge). There is
a natural mapping between the neighborhood of the collapsed
edge and the neighborhood of the generated vertex. Most of the
triangles incident to the collapsed edge are stretched into corre-
sponding triangles incident to the generated vertex. However, the
two triangles that share the collapsed edge are themselves col-
lapsed to edges (see Figure 1). These natural correspondences
are one form of mapping

This natural mapping has two weaknesses.



Figure 1: The natural mapping primarily maps triangles to
triangles. The two grey triangles map to edges, and the collapsed
edge maps to the generated vertex

1. The degeneracy of the triangles mapping to edges prevents
us from mapping points of the simplified surface back to
unique points on the original surface. This also implies that
if we have any sort of attribute field across the surface, a
portion of it disappears as a result of the operation.

2. The error implied by this mapping may be larger than nec-
essary.

We measure the surface deviation error of the operation by
the distances between corresponding points of our mapping. If
we use the natural mapping, the maximum distance between any
pair of points is defined as:

1 2

where the collapsed edge corresponds to 1 2 and
is the generated vertex.

If we place the generated vertex at the midpoint of the col-
lapsed edge, this distance error will be half the length of the edge.
If we place the vertex at any other location, the error will be even
greater.

We can create mappings that are free of degeneracies and often
imply less error than the natural mapping. For simplicity, and to
guarantee no self-intersections, we perform our mappings using
planar projections of our local neighborhood. We refer to them
as successive mappings.

4 Successive Mapping
In this section we present an algorithm to compute the mappings
and their error bounds, which guide the simplification process.
We present efficient and complete algorithms for computing a
planar projection, finding a generated vertex in the plane,creating
a mapping in the plane, and finally placing the generated vertex
in 3D. The resulting algorithms utilize a number of techniques
from computational geometry and are efficient in practice.

4.1 Computing a Planar Projection
Given a set of triangles in 3D, we present an efficient algorithm
to compute a planar projection which is one-to-one to the set of
triangles. The algorithm is guaranteed to find a plane, if it exists.

The projection we seek should be one-to-one to guarantee
that the operations we perform in the plane are meaningful. For
example, suppose we project a connected set of triangles onto
a plane and then re-triangulate the polygon described by their
boundary. The resulting set of triangles will contain no self-
intersections, so long as the projection is one-to-one. Many other
simplification algorithms, such as those by Turk [22], Schroeder
[19] and Cohen, Varshney et al. [5], also used such projections for

Direction of Projection

Bad
Normals

Not one-to-one on this interval

Figure 2: A 2D example of an invalid projection

vertex removal. However, they would choose a likely direction,
such as the average of the normal vectors of the triangles of
interest. To test the validity of the resulting projection, these
earlier algorithms would project all the triangles onto the plane
and check for self-intersections. This process can be relatively
expensive and is not guaranteed to find a one-to-one projecting
plane.

We improve on earlier brute-force approaches in two ways.
First, we present a simple, linear-time algorithm for testing the
validity of a given direction. Second, we present a slightly more
complex, but still expected linear-time, algorithm which will find
a valid direction if one exists, or report that no such direction
exists for the given set of triangles.

4.1.1 Validity Test for Planar Projection

In this section, we briefly describe the algorithm which checks
whether a given set of triangles have a one-to-one planar projec-
tion. Assume that we can calculate a consistent set of normal
vectors for the set of triangles in question (if we cannot, the sur-
face is non-orientable and cannot be mapped onto a plane in a
one-to-one fashion). If the angle between a given direction of
projection and the normal vector of each of the triangles is less
than 90 , then the direction of projection is valid, and defines a
one-to-one mapping from the 3D triangles to a set of triangles in
the plane of projection (any plane perpendicular to the direction
of projection). Note that for a given direction of projection and a
given set of triangles, this test involves only a single dot product
and a sign test for each triangle in the set.

The correctness of the validity test can be established rigor-
ously [4]. Due to space limitations, we do not present the detailed
proof here. Rather, we give a short overview of the proof.

Figure 2 illustrates our problem in 2D. We would like to
determine if the projection of the curve onto the line is one-to-one.
Without loss of generality, assume the direction of projection is
the y-axis. Each point on the curve projects to its x-coordinate
on the line. If we traverse the curve from its left-most endpoint,
we can project onto a previously projected location if and only
if we reverse our direction along the x-axis. This can only
occur when the y-component of the curve’s normal vector goes
from a positive value to a negative value. This is equivalent to
our statement that the normal will be more than 90 from the
direction of projection. With a little more work, we can show
that this characterization generalizes to 3D.

4.1.2 Finding a valid direction

The validity test in the previous section provides a quick method
of testing the validity of a likely direction as a one-to-one map-
ping projection. But the wider the spread of the normal vectors
of our set of triangles, the less likely we are to find a valid di-
rection by using any sort of heuristic. It is possible, in fact, to
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Figure 3: A 2D example of the valid projection space. a) Two
line segments and their normals. b) The 2D Gaussian circle, the
planes corresponding to each segment, and the space of valid
projection directions.

compute the set of all valid directions of projection for a given
set of triangles. However, to achieve greater efficiency and to
reduce the complexity of the software system we choose to find
only a single valid direction, which is typically all we require.

The Gaussian sphere [2] is the unit sphere on which each point
corresponds to a unit normal vector with the same coordinates.
Given a triangle, we define a plane through the origin with the
same normal as the triangle. For a direction of projection to
be valid with respect to this triangle, its point on the Gaussian
sphere must lie on the correct side of this plane (i.e. within the
correct hemisphere). If we consider two triangles simultaneously
(shown in 2D in Figure 3) the direction of projection must lie on
the correct side of the planes determined by the normal vectors
of both triangles. This is equivalent to saying that the valid
directions lie within the intersection of half-spaces defined by
these two planes. Thus, the valid directions of projection for a
set of N triangles lie within the intersection of N half-spaces.

This intersection of half-spaces forms a convex polyhedron.
This polyhedron is a cone, with its apex at the origin and an
unbounded base (shown as a triangular region in Figure 3). We
can force this polyhedron to be bounded by adding more half-
spaces (we use the six faces of a cube containing the origin). By
finding a point on the interior of this cone and normalizing its
coordinates, we shall construct a unit vector in the direction of
projection.

Rather than explicitly calculating the boundary of the cone,
we simply find a few corners (vertices) and average them to find
a point that is strictly inside. By construction, the origin is def-
initely such a corner, so we just need to find three more unique
corners to calculate an interior point. We can find each of these
corners by solving a 3D linear programming problem. Linear
programming allows us to find a point that maximizes a linear ob-
jective function subject to a collection of linear constraints [13].
The equations of the half-spaces serve as our linear constraints.
We maximize in the direction of a vector to find the corner of our
cone that lies the farthest in that direction.

As stated above, the origin is our first corner. To find the
second corner, we try maximizing in the positive- direction.
If the resulting point is the origin, we instead maximize in the
negative- direction. To find the third corner, we maximize
in a direction orthogonal to the line containing the first two
corners. If the resulting point is one of the first two corners,
we maximize in the opposite direction. Finally, we maximize
in a direction orthogonal to the plane containing the first three
corners. Once again, we may need to maximize in the opposite

v1

v2

edge

Figure 4: The neighborhood of an edge as projected into 2D

a) b)

Figure 5: a) An invalid 2D vertex position. b) The kernel of a
polygon is the set of valid positions for a single, interior vertex
to be placed. It is the intersection of a set of inward half-spaces.

direction instead. Note that it is possible to reduce the worst-case
number of optimizations from six to four by using the triangle
normals to guide the selection of optimization vectors.

We used Seidel’s linear time randomized algorithm [20] to
solve each linear programming problem. A public domain im-
plementation of this algorithm by Hohmeyer is available. It is
very fast in practice.

4.2 Placing the Vertex in the Plane
In the previous section, we presented an algorithm to compute
a valid plane. The edge collapse, which we use as our simplifi-
cation operation, entails merging the two vertices of a particular
edge into a single vertex. The topology of the resulting mesh is
completely determined, but we are free to choose the position of
the vertex, which will determine the geometry of the resulting
mesh.

When we project the triangles neighboring the given edge onto
a valid plane of projection, we get a triangulated polygon with
two interior vertices, as shown in Figure 4. The edge collapse
will reduce this edge to a single vertex. There will be edges
connecting this generated vertex to each of the vertices of the
polygon. In the context of this mapping approach, we would like
the set of triangles around the generated vertex to have a one-
to-one mapping with our chosen plane of projection, and thus to
have a one-to- one mapping with the original edge neighborhood
as well.

In this section, we present linear time algorithms both to test
a candidate vertex position for validity, and to find a valid vertex
position, if one exists.

4.2.1 Validity test for Vertex Position

The edge collapse operation leaves the boundary of the polygon
in the plane unchanged. For the neighborhood of the generated
vertex to have a one-to-one mapping with the plane, its edges
must lie entirely within the polygon, ensuring that no edge cross-
ings occur.
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Figure 6: a) Edge neighborhood and generated vertex neigh-
borhood superimposed. b) A mapping in the plane, composed
of 25 polygonal cells (each cell contains a dot). Each cell maps
between a pair of planar elements in 3D.

This 2D visibility problem has been well-studied in the com-
putational geometry literature [14]. The generated vertex must
have an unobstructed line of sight to each of the surrounding
polygon vertices (unlike the vertex shown in Figure 5a). This
condition holds if and only if the generated vertex lies within the
polygon’s kernel, shown in Figure 5b. This kernel is the inter-
section of inward-facing half-planes defined polygon’s edges.

Given a potential vertex position in 2D, we test its validity
by plugging it into the implicit-form equation for each of the
polygon edges’ line. If the position is on the interior with respect
to each line, the position is valid, otherwise it is invalid.

4.2.2 Finding a Valid Position

The validity test highlighted above is useful if we wish to test out
a likely candidate for the generated vertex position, such as the
midpoint of the edge being collapsed. If such a heuristic choice
succeeds, we can avoid the work necessary to compute a valid
position directly.

Given the kernel definition for valid points, it is straightfor-
ward to find a valid vertex position using 2D linear programming.
Each of the lines provides one of the constraints for the linear
programming problem. Using the same methods as in Section
4.1.2, we can find a point in the kernel with no more than four
calls to the linear programming routine. The first and second
corners are found by maximizing in the positive- and negative-
directions. The final corner is found using a vector orthogonal to
the first two corners.

4.3 Creating a Mapping in the Plane
After mapping the edge neighborhood to a valid plane and choos-
ing a valid position for the generated vertex, we must define a
mapping between the edge neighborhood and the generated ver-
tex neighborhood. We shall map to each other the pairs of 3D
points which project to identical points on the plane. These
correspondences are shown in Figure 6a.

We can represent the mapping by a set of map cells, shown in
Figure 6b. Each cell is a convex polygon in the plane and maps
a piece of a triangle from the edge neighborhood to a similar
piece of a triangle from the generated vertex neighborhood. The
mapping represented by each cell is linear.

The vertices of the polygonal cells fall into four categories:
vertices of the overall neighborhood polygon, vertices of the
collapsed edge, the generated vertex itself, and edge-edge inter-
section points. We already know the locations of the first three
categories of cell vertices, but we must calculate the edge-edge
intersection points explicitly. Each such point is the intersection
of an edge adjacent to the collapsed edge with an edge adjacent to

the generated vertex. The number of such points can be quadratic
(in the worst case) in the number of neighborhood edges. If we
choose to construct the actual cells, we may do so by sorting
the intersection points along each neighborhood edge and then
walking the boundary of each cell.

4.4 Optimizing the 3D Vertex Position
Up to this point, we have projected the original edge neighbor-
hood onto a plane, performed an edge collapse in this plane,
and computed a mapping in the plane between these two local
meshes. We are now ready to choose the position of the gener-
ated vertex in 3D. This 3D position will completely determine
the geometry of the triangles surrounding the generated vertex.

To preserve our one-to-one mapping, it is necessary that all
the points of the generated vertex neighborhood, including the
generated vertex itself, project back into 3D along the direction of
projection (the normal to the plane of projection). This restricts
the 3D position of the generated vertex to the line parallel to the
direction of projection and passing through the generated vertex’s
2D position in the plane. We choose the vertex’s position along
this line such that it introduces as small a surface deviation as
possible, that is it minimizes the maximum distance between any
two corresponding points of the edge collapse neighborhood and
the generated vertex neighborhood.

4.4.1 Distance function of the map

Each cell of our mapping determines a correspondence between
a pair of planar elements. The maximum distance between any
pair of planar functions must be at the boundary. For these pairs
of polygons, the maximum distance must occur at a vertex. So
the maximum distance for the entire mapping will always be at
one of the interior cell vertices (because the cell vertices along
the boundary do not move).

We parameterize the position of the generated vertex along
its line of projection by a single parameter, . As varies, the
distance between the corresponding cell vertices in 3D varies lin-
early. Note that these distances will always be along the direction
of projection, because the distance between corresponding cell
vertices is zero in the other two dimensions (those of the plane of
projection). Because the distance is always positive, the distance
function of each cell vertex is actually a pair of lines intersecting
on the x-axis (shaped like a “V”).

4.4.2 Minimizing the distance function

Given the distance function, we would like to choose the param-
eter that minimizes the maximum distance between any pair of
mapped points. This point is the minimum of the so-called upper
envelope. For a set of linear functions, we define the upper
envelope function as follows:

1 ;

For linear functions with no boundary conditions, this function
is convex. Again we use linear programming to find the value
at which the minima occurs. We use this value of to calculate
the position of the generated vertex in 3D.

4.5 Accommodating Bordered Surfaces
Bordered surface are those containing edges adjacent to only a
single triangle, as opposed to two triangles. Such surfaces are



quite common in practice. Borders create some complications
for the creation of a mapping in the plane. The problem is that the
total shape of the neighborhood projected into the plane changes
as a result of the edge collapse.

Bajaj and Schikore [1], who employ a vertex-removal ap-
proach, deal with this problem by mapping the removed vertex
to a length-parameterized position along the border. This solu-
tion can be employed for the edge-collapse operation as well. In
their case, a single vertex maps to a point on an edge. In ours,
three vertices map to points on a chain of edges.

5 Applying Mappings
The previous section described the steps required to compute a
mapping using planar projections. Given such a mapping, we
would now like to apply it to the problem of computing high-
quality surface approximations. We will next discuss how to
bound the distance from the current simplified surface to the
original surface, and how to compute new values for scalar sur-
face attributes at the generated vertex.

5.1 Approximation of Original Surface
Position

In the process of creating a mapping, we have measured the
distance between the current surface and the surface resulting
from the application of one more simplification operation. What
we eventually desire is the distance between this new surface
and the original surface. One possible solution would be to in-
corporate the information from all the previous mappings into
an increasingly complex mapping as the simplification process
proceeds. While this approach has the potential for a high de-
gree of accuracy, the increasing complexity of the mappings is
undesirable.

Instead, we associate with every point on the current surface
a volume that is guaranteed to contain the corresponding point
on the original surface. This volume is chosen conservatively so
we can use the same volume for all points in a triangle. Thus the
portion of the original surface corresponding to the triangle lies
within the convolution of the triangle and the volume.

Possible volume choices include axis-aligned boxes, triangle-
aligned prisms and sphere. For computational efficiency, we use
axis-aligned boxes. To improve the error bounds, we do not
require the box to be centered at the point of application.

The initialbox at every triangle has zero size and displacement.
After computing the mapping in the plane and choosing the 3D
vertex position, we propagate the error by adjusting the size and
displacement of the box associated with each new triangle.

For each cell vertex, we create a box that contains the boxes of
the old triangles that meet there. The box for each new triangle
is then constructed to contain the boxes of all of its cell vertices.
By maintaining this containment property at the cell vertices, we
guarantee it for all the interior points of the cells.

The maximum error for each triangle is the distance between
a point on the triangle and the farthest corner of its associated
box. The error of the entire current mesh is the largest error of
any of its triangles.

5.2 Computing Texture Coordinates
The use of texture maps has become common over the last several
years, as the hardware support for texture mapping has increased.

Texture maps provide visual richness to computer-rendered mod-
els without adding more polygons to the scene.

Texture mapping requires two texture coordinatesat every ver-
tex of the model. These coordinates provide a parameterization
of the texture map over the surface.

As we collapse an edge, we must compute texture coordinates
for the generated vertex. These coordinates should reflect the
original parameterization of the texture over the surface. We
use linear interpolation to find texture coordinates for the corre-
sponding point on the old surface, and assign these coordinates
to the generated vertex.

This approach works well in many cases, as demonstrated in
Section 7. However, there can still be some sliding of the texture
across the surface. We can extend our mapping approach to also
measure and bound the deviation of the texture. This extension,
currently under development, will provide more guarantees about
the smoothness of transitions between levels of detail.

As we add more error measures to our system, it becomes
necessary to decide how to weight these errors to determine
the overall cost of an edge collapse. Each type of error at an
edge mandates a particular viewing distance based on a user-
specified screen-space tolerance (e.g. number of allowable pixels
of surface or texel deviation). We conservatively choose the
farthest of these. At run-time, the user can still adjust the overall
screen-space tolerance, but the relationships between the types
of error are fixed.

6 System Implementation
All the algorithms described in this paper have been implemented
and applied to various models. While the simplification process
itself is only a pre-process with respect to the graphics applica-
tion, we would still like it to be as efficient as possible. The most
time-consuming part of our implementation is the re-computation
of edge costs as the surface is simplified (Section 3.1). To reduce
this computation time, we allow our approach to be slightly less
greedy. Rather than recompute all the local edge costs after a
collapse, we simply set a dirty flag for these edges. If the next
minimum-cost edge we pick to collapse is dirty, we re-compute
it’s cost and pick again. This lazy evaluation of edge costs sig-
nificantly speeds up the algorithm without much effect on the
error across the progressive mesh.

More important than the cost of the simplification itself is
the speed at which our graphics application runs. To maximize
graphics performance, our display application renders simplified
objects only with display lists. After loading the progressive
mesh, it takes snapshots to use as levels of detail every time the
triangle count decreases by a factor of two. These choices limit
the memory usage to twice the original number of triangles, and
virtually eliminate any run-time cost of simplification.

7 Results
We have applied our simplification algorithm to four distinct
objects: a bunny rabbit, a wrinkled torus, a lion, and a Ford
Bronco, with a total of 390 parts. Table 1 shows the total input
complexity of each of these objects as well as the time needed to
generate a progressive mesh representation. All simplifications
were performed on a Hewlett-Packard 735/125 workstation.

Figure 7 graphs the complexity of each object vs. the number
of pixels of screen-space error for a particular viewpoint. Each set



Model Parts Orig. Triangles CPU Time (Min:Sec)
Bunny 1 69,451 9:05
Torus 1 79,202 10:53
Lion 49 86,844 8:52

Bronco 339 74,308 6:55

Table 1: Simplifications performed. CPU time indicates time
to generate a progressive mesh of edge collapses until no more
simplification is possible.
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Figure 7: Continuum of levels of detail for four models

of data was measured with the object centered in the foreground
of a 1000x1000-pixel viewport, with a 45 field-of-view, like
the Bronco in Plates 2 and 3. This was the easiest way for
us to measure the continuum. Conveniently, this function of
complexity vs. error at a fixed distance is proportional to the
function of complexity vs. viewing distance with a fixed error.
The latter is typically the function of interest.

Plate 1 shows the typical way of viewing levels of detail – with
a fixed error bound and levels of detail changing as a function of
distance. Plates 2 and 3 show close-ups of the Bronco model at
full and reduced resolution.

Plates 4 and 5 show the application of our algorithm to the
texture-mapped lion and wrinkled torus models. If you know
how to free-fuse stereo image pairs, you can fuse the torii or
any of the adjacent pairs of textured lion. Because the torii are
rendered at an appropriate distance for switching between the two
levels of detail, the images are nearly indistinguishable, and fuse
to a sharp, clear image. The lions, however, are not rendered at
their appropriate viewing distances, so certain discrepancies will
appear as fuzzy areas. Each of the lion’s 49 parts is individually
colored in the wire-frame rendering to indicate which of its levels
of detail is currently being rendered.

7.1 Applications of Projection Algorithm
We have also applied the technique of finding a one-to-one planar
projection to the simplification envelopes algorithm [5]. The
simplification envelopes method requires the calculation of a
vertex normal at each vertex that may be used as a direction
to offset the vertex. The criterion for being able to move a
vertex without creating a local self-intersection is the same as
the criterion for being able to project to a plane. The algorithm
presented in [5] used a heuristic based on averaging the face
normals.

By applying the projection algorithm based on linear program-
ming (presented in Section 4.1) to the computation of the offset

directions, we were able to perform more drastic simplifications.
The simplification envelopes method could previously only re-
duce the bunny model to about 500 triangles, without resulting
in any self-intersections. Using the new approach, the algorithm
can reduce the bunny to 129 triangles, with no self-intersections.

7.2 Video Demonstration

We have produced a video demonstrating the capabilities of
the algorithm and smooth switching between different levels-
of-details for different models. It shows the speed-up in the
frame rate for eight circling Bronco models (about a factor of
six) with almost no degradation in image quality. This is based
on mapping the object space error bounds to screen space, which
can measure the maximum error in number of pixels. The video
also highlights the performance on simplifying textured models,
showing smooth switching between levels of detail. The texture
coordinates were computed using the algorithm in Section 5.2.

8 Comparison to Previous Work

While concrete comparisons are difficult to make without careful
implementation of all the related approaches readily available,we
compare some of the features of our algorithm with that of others.
The efficient and complete algorithms for computing the planar
projection and placing the generated vertex after edge collapse
should improve the performance of all the earlier algorithms that
use vertex removals or edge collapses.

We compared our implementation with that of the simplifica-
tion envelopes approach [5]. We generated levels of detail of the
Stanford bunny model (70,000 triangles) using the simplification
envelopes method, then generated levels of detail with the same
number of triangles using the successive mapping approach. Vi-
sually, the models were comparable. The error bounds for the
simplification envelopes method were smaller by about a factor
of two, but the error bounds for the two methods measure dif-
ferent things. Simplification envelopes only bounds the surface
deviation in the direction normal to the original surface, while
the mapping approach prevents the surface from sliding around
as well. Also, simplification envelopes created local creases in
the bunnies, resulting in some shading artifacts. The successive
mapping approach discourages such creases by its use of planar
projections. At the same time, the performance of the simplifi-
cation envelopes approach (in terms complexity vs. error) has
been improved by our new projection algorithm.

Hoppe’s progressive mesh [12] implementation is more com-
plete than ours in its handling of colors, textures, and disconti-
nuities. However, this technique provides no guaranteed error
bounds, so there is no simple way to automatically choose switch-
ing distances that guarantee some visual quality.

The multi-resolution analysis approach to simplification [7, 8]
does, in fact, provide strict error bounds as well as a mapping
between surfaces. However, the requirements of its subdivision
topology and the coarse granularity of its simplification operation
do not provide the local control of the edge collapse. In particular,
it does not deal well with sharp edges. Hoppe [12] has compared
his progressive meshes with the multi-resolutionanalysis meshes.
For a given number of triangles, his progressive meshes provide
much higher visual quality. Therefore, for a given error bound,
we expect our mapping algorithm to be able to simplify more
than the multi-resolution approach.



Guéziec’s tolerance volume approach [9] also uses edge col-
lapses with local error bounds. Unlike the boxes used by the
successive mapping approach, Guéziec’s error volume can grow
as the simplified surface fluctuates closer to and farther away
from the original surface. This is due to the fact that it uses
spheres which always remain centered at the vertices, and the
newer spheres must always contain the older spheres. The boxes
used by our successive mapping approach are not centered on the
surface and do not grow as a result of such fluctuations. Also, the
tolerance volume approach does not generate mappings between
the surfaces for use with other attributes.

We have made several significant improvements over the sim-
plification algorithm presented by Bajaj and Schikore [1, 17].
First, we have replaced their projection heuristic with a robust
algorithm for finding a valid direction of projection. Second, we
have generalized their approach to handle more complex oper-
ations, such as the edge collapse. Finally, we have presented
an error propagation algorithm which correctly bounds the er-
ror in the surface deviation. Their approach represented error
as infinite slabs surrounding each triangle. Because there is no
information about the extent of these slabs, it is impossible to
correctly propagate the error from a slab with one orientation to
a new slab with a different orientation.

9 Future Work

We are currently working on bounding the screen-space deviation
of the texture coordinates. By bounding the error of the texture
coordinates, we will provide one type of bound on the deviation
of surface colors (from a texture map) or normals (from a bump
map). We also plan to measure and bound the deviation of colors
and normals specified directly at the polygon vertices.

There are cases where the projection onto a plane produces
mappings with unnecessarily large error. We only optimize sur-
face position in the direction orthogonal to the plane of projection.
It would be useful to generate and optimize mappings directly in
3D to produce better simplifications.

Our system currently handles non-manifold topologies by
breaking them into independent surfaces, which does not main-
tain connectivity between the components. Handling such non-
manifold regions directly may provide higher visual fidelity for
large screen-space tolerances.
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Abstract

We propose the idea of simplification envelopes for gen-
erating a hierarchy of level-of-detail approximations for a
given polygonal model. Our approach guarantees that all
points of an approximation are within a user-specifiable
distance � from the original model and that all points of the
original model are within a distance � from the approxima-
tion. Simplificationenvelopes provide a general framework
within which a large collection of existing simplification
algorithms can run. We demonstrate this technique in con-
junction with two algorithms, one local, the other global.
The local algorithm provides a fast method for generating
approximations to large input meshes (at least hundreds of
thousands of triangles). The global algorithm provides the
opportunity to avoid local “minima” and possibly achieve
better simplifications as a result.

Each approximation attempts to minimize the total num-
ber of polygons required to satisfy the above � constraint.
The key advantages of our approach are:

� General technique providing guaranteed error bounds
for genus-preserving simplification

� Automation of both the simplification process and the
selection of appropriate viewing distances

� Prevention of self-intersection
� Preservation of sharp features
� Allows variation of approximation distance across dif-
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1 Introduction

We present the framework of simplification envelopes for
computing various levels of detail of a given polygonal
model. These hierarchical representations of an object can
be used in several ways in computer graphics. Some of
these are:

� Use in a level-of-detail-based rendering algorithm for
providing desired frame update rates [4, 9].

� Simplifyingtraditionallyover-sampled models such as
those generated from volume datasets, laser scanners,
and satellites for storage and reducing CPU cycles
during processing, with relatively few or no disadvan-
tages [10, 11, 13, 15, 21, 23].

� Using low-detail approximations of objects for illumi-
nation algorithms, especially radiosity [19].

Simplification envelopes are a generalization of offset
surfaces. Given a polygonal representation of an object,
they allow the generation of minimal approximations that
are guaranteed not to deviate from the original by more than
a user-specifiable amount while preserving global topol-
ogy. We surround the original polygonal surface with two
envelopes, then perform simplification within this volume.
A sample application of the algorithms we describe can be
seen in Figure 1.

Figure 1: A level-of-detail hierarchy for the rotor from a brake
assembly.
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Such an approach has several benefits in computer graph-
ics. First, one can very precisely quantify the amount of
approximation that is tolerable under given circumstances.
Given a user-specified error in number of pixels of devia-
tion of an object’s silhouette, it is possible to choose which
level of detail to view from a particular distance to maintain
that pixel error bound. Second, this approach allows one a
fine control over which regions of an object should be ap-
proximated more and which ones less. This could be used
for selectively preserving those features of an object that
are perceptually important. Third, the user-specifiable tol-
erance for approximation is the only parameter required to
obtain the approximations; fine tweaking of several param-
eters depending upon the object to be approximated is not
required. Thus, this approach is quite useful for automat-
ing the process of topology-preserving simplifications of a
large number of objects. This problem of scalability is im-
portant for any simplification algorithm. One of our main
goals is to create a method for simplification which is not
only automatic for large datasets, but tends to preserve the
shapes of the original models.

The rest of the paper is organized in the following man-
ner: we survey the related work in Section 2, explain our
assumptions and terminology in Section 3, describe the en-
velope and approximation computations in Sections 4 and
5, present some useful extentions to and properties of the
approximation algorithms in Section 6, and explain our im-
plementation and results in Section 7.

2 Background

Approximation algorithms for polygonal models can be
classified into two broad categories:

� Min-# Approximations: For this version of the ap-
proximation problem, given some error bound �, the
objective is to minimize the number of vertices such
that no point of the approximation A is farther than �
distance away from the input model I.

� Min-� Approximations: Here we are given the num-
ber of vertices of the approximationA and the objec-
tive is to minimize the error, or the difference, between
A and I.

Previous work in the area of min-# approximations has
been done by [6, 20] where they adaptively subdivide a
series of bicubic patches and polygons over a surface until
they fit the data within the tolerance levels.

In the second category, work has been done by several
groups. Turk [23] first distributes a given number of vertices
over the surface depending on the curvature and then re-
triangulates them to obtain the final mesh. Schroeder et
al. [21] and Hinker and Hansen [13] operate on a set of
local rules — such as deleting edges or vertices from almost
coplanar adjacent faces, followed by local re-triangulation.
These rules are applied iteratively till they are no longer
applicable. A somewhat different local approach is taken in
[18] where vertices that are close to each other are clustered
and a new vertex is generated to represent them. The mesh
is suitably updated to reflect this.

Hoppe et al. [14] proceed by iteratively optimizing an
energy function over a mesh to minimize both the distance
of the approximating mesh from the original, as well as the
number of approximating vertices. An interesting and ele-
gant solution to the problem of polygonal simplification by
using wavelets has been presented in [7, 8] where arbitrary
polygonal meshes are first subdivided into patches with

subdivision connectivity and then multiresolution wavelet
analysis is used over each patch. This wavelet approach
preserves global topology.

In computational geometry, it has been shown that com-
puting the minimal-facet �-approximation is NP-hard for
both convex polytopes [5] and polyhedral terrains [1]. Thus,
algorithms to solve these problems have evolved around
finding polynomial-time approximations that are close to
the optimal.

Let ko be the size of a min-# approximation. An
algorithm has been given in [16] for computing an �-
approximation of size O(ko logn) for convex polytopes.
This has recently been improved by Clarkson in [3]; he
proposes a randomized algorithm for computing an approx-
imation of size O(ko logko) in expected time O(kon

1+�)
for any � > 0 (the constant of proportionality depends on
�, and tends to+1 as � tends to 0). In [2] Brönnimann and
Goodrich observed that a variant of Clarkson’s algorithm
yields a polynomial-time deterministic algorithm that com-
putes an approximation of size O(k0). Working with poly-
hedral terrains, [1] present a polynomial-time algorithm
that computes an �-approximation of size O(ko logko) to a
polyhedral terrain.

Our work is different from the above in that it allows
adaptive, genus-preserving, �-approximation of arbitrary
polygonal objects. Additionally, we can simplify bordered
meshes and meshes with holes. In terms of direct compari-
son with the global topologypreserving approach presented
in [7, 8], for a given � our algorithm has been empirically
able to obtain “reduced" simplifications, which are much
smaller in output size (as demonstrated in Section 7). The
algorithm in [18] also guarantees a bound in terms of the
Hausdorff metric. However, it is not guaranteed to preserve
the genus of the original model.

3 Terminology and Assumptions
Let us assume thatI is a three-dimensional compact and ori-
entable object whose polygonal representation P has been
given to us. Our objective is to compute a piecewise-linear
approximationA of P. Given two piecewise linear objects
P andQ, we say thatP andQ are �-approximationsof each
other iff every point on P is within a distance � of some
point of Q and every point on Q is within a distance � of
some point ofP. Our goal is to outline a method to generate
two envelope surfaces surroundingP and demonstrate how
the envelopes can be used to solve the following polygonal
approximation problem. Given a polygonal representation
P of an object and an approximation parameter �, generate
a genus-preserving �-approximationA with minimal num-
ber of polygons such that the vertices of A are a subset of
vertices of P.

We assume that all polygons in P are triangles and that
P is a well-behaved polygonal model, i.e., every edge has
either one or two adjacent triangles, no two triangles inter-
penetrate, there are no unintentional “cracks" in the model,
no T-junctions, etc.

We also assume that each vertex ofP has a single normal
vector, which must lie within 90o of the normal of each of
its surrounding triangles. For the purpose of rendering,
each vertex may have either a single normal or multiple
normals. For the purpose of generating envelope surfaces,
we shall compute a single vertex normal as a combination
of the normals of the surrounding triangles.

The three-dimensional �-offset surface for a parametric
surface

f (s; t) = (f1(s; t); f2(s; t); f3(s; t));



whose unit normal to f is

n(s; t) = (n1(s; t); n2(s; t); n3(s; t));

is defined as f �(s; t) = (f�1 (s; t); f
�
2 (s; t); f

�
3 (s; t)), where

f�i (s; t) = fi(s; t) + �ni(s; t):

Note that offset surfaces for a polygonal object can self-
intersect and may contain non-linear elements. We define
a simplification envelope P(+�) (respectively P(��)) for
an object I to be a polygonal surface that lies within a dis-
tance of � from every point p on I in the same (respectively
opposite) direction as the normal to I at p. Thus, the simpli-
fication envelopes can be thought of as an approximation to
offset surfaces. Henceforth we shall refer to simplification
envelope by simply envelope.

Let us refer to the triangles of the given polygonal repre-
sentation P as the fundamental triangles. Let e = (v1; v2)
be an edge of P. If the normals n1;n2 to I at both v1 and
v2, respectively, are identical, then we can construct a plane
�e that passes through the edge e and has a normal that is
perpendicular to that of v1. Thus v1, v2 and their normals
all lie along �e. Such a plane defines two half-spaces for
edge e, say �+e and ��e (see Fig 2(a)). However, in general
the normals n1 and n2 at the vertices v1 and v2 need not
be identical, in which case it is not clear how to define the
two half-spaces for an edge. One choice is to use a bilinear
patch that passes through v1 and v2 and has a tangent n1 at
v1 and n2 at v2. Let us call such a bilinear patch for e as the
edge half-space �e. Let the two half-spaces for the edge e
in this case be �+e and ��e . This is shown in Fig 2(b).
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Figure 2: Edge Half-spaces

Let the vertices of a fundamental triangle be v1, v2, and
v3. Let the coordinates and the normal of each vertex v be
represented as c(v) andn(v), respectively. The coordinates
and the normal of a (+�)-offset vertex v+i for a vertex vi
are: c(v+i ) = c(vi) + �n(vi), and n(v+i ) = n(vi). The
(��)-offset vertex can be similarly defined in the opposite
direction. These offset vertices for a fundamental triangle
are shown in Figure 3.

Now consider the closed object defined by v+i and v�i ,
i = 1; 2; 3. It is defined by two triangles, at the top and
bottom, and three edge half-spaces. This object contains
the fundamental triangle (shown shaded in Figure 3) and
we will henceforth refer to it as the fundamental prism.

4 Envelope Computation
In order to preserve the input topology of P, we desire
that the simplification envelopes do not self-intersect. To
meet this criterion we reduce our level of approximation
at certain places. In other words, to guarantee that no
intersections amongst the envelopes occur, we have to be
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Figure 3: The Fundamental Prism

content at certain places with the distance betweenP and the
envelope being smaller than �. This is how simplification
envelopes differ from offset surfaces.

We construct our envelope such that each of its trian-
gles corresponds to a fundamental triangle. We offset each
vertex of the original surface in the direction of its normal
vector to transform the fundamental triangles into those of
the envelope.

If we offset each vertex vi by the same amount �, to
get the offset vertices v+i and v�i , the resulting envelopes,
P(+�) and P(��), may contain self-intersections because
one or more offset vertices are closer to some non-adjacent
fundamental triangle. In other words, if we define a Voronoi
diagram over the fundamental triangles of the model, the
condition for the envelopes to intersect is that there be at
least one offset vertex lying in the Voronoi region of some
non-adjacent fundamental triangle. This is shown in Fig-
ure 4 by means of a two-dimensional example. In the figure,
the offset vertices b+ and c+ are in the Voronoi regions of
edges other than their own, thus causing self-intersection of
the envelope.
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Figure 4: Offset Surfaces

Once we make this observation, the solution to avoid self-
intersections becomes quite simple — just do not allow
an offset vertex to go beyond the Voronoi regions of its
adjacent fundamental triangles. In other words, determine
the positive and negative � for each vertex vi such that
the vertices v+i and v�i determined with this new � do not
lie in the Voronoi regions of the non-adjacent fundamental
triangles.

While this works in theory, efficient and robust com-
putation of the three-dimensional Voronoi diagram of the
fundamental triangles is non-trivial. We now present two
methods for computing the reduced � for each vertex, the
first method analytical, and the second numerical.



4.1 Analytical � Computation
We adopt a conservative approach for recomputing the � at
each vertex. This approach underestimates the values for
the positive and negative �. In other words, it guarantees
the envelope surfaces not to intersect, but it does not guar-
antee that the � at each vertex is the largest permissible �.
We next discuss this approach for the case of computing
the positive � for each vertex. Computation of negative �
follows similarly.

Consider a fundamental triangle t. We define a prism
tp for t, which is conceptually the same as its fundamental
prism, but uses a value of 2� instead of � for defining the
envelope vertices. Next, consider all triangles ∆i that do
not share a vertex with t. If ∆i intersects tp above t (the
directions above and below t are determined by the direction
of the normal to t, above is in the same direction as the
normal to t), we find the point on ∆i that lies within tp and
is closest to t. This point would be either a vertex of ∆i,
or the intersection point of one of its edges with the three
sides of the prism tp. Once we find the point of closest
approach, we compute the distance �i of this point from t.
This is shown in Figure 5.
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Figure 5: Computation of �i

Once we have done this for all ∆i, we compute the new
value of the positive � for the triangle t as �new = 1

2 mini �i.
If the vertices for this triangle t have this value of positive �,
their positive envelope surface will not self-intersect. Once
the �new(t)values for all the triangles thave been computed,
the �new(v) for each vertex v is set to be the minimum of
the �new(t) values for all its adjacent triangles.

We use an octree in our implementation to speed up the
identification of triangles ∆i that intersect a given prism.

4.2 Numerical � Computation
To compute an envelope surface numerically, we take an it-
erative approach. Our envelope surface is initially identical
to the input model surface. In each iteration, we sequen-
tially attempt to move each envelope vertex a fraction of
the � distance in the direction of its normal vector (or the
opposite direction, for the inner envelope). This effectively
stretches or contracts all the triangles adjacent to the vertex.
We test each of these adjacent triangles for intersection with
each other and the rest of the model. If no such intersections
are found, we accept the step, leaving the vertex in this new
position. Otherwise we reject it, moving the vertex back
to its previous position. The iteration terminates when all
vertices have either moved � or can no longer move.

In an attempt to guarantee that each vertex gets to move
a reasonable amount of its potential distance, we use an

adaptive step size. We encourage a vertex to move at least
K (an arbitrary constant which is scaled with respect to �
and the size of the object) steps by allowing it to reduce its
step size. If a vertex has moved less than K steps and its
move is been rejected, it divides its step size in half and tries
again (with some maximum number of divides allowed on
any particular step). Notice that if a vertex moves i steps
and is rejected on the (i+ 1)st step, we know it has moved
at least i=(i+ 1) % of its potential distance, so K=(K + 1)
which is a lower bound of sorts. It is possible, though rare,
for a vertex to move less than K steps, if its current position
is already quite close to another triangle.

Each vertex also has its own initial step size. We first
choose a global, maximum step size based on a global prop-
erty: either some small percentage of the object’s bounding
box diagonal length or �=K, whichever is smaller. Now
for each vertex, we calculate a local step size. This local
step size is some percentage of the vertex’s shortest incident
edge (only those edges within 90o of the offset direction are
considered). We set the vertex’s step size to the minimum
of the global step size and its local step size. This makes it
likely that each vertex’s step size is appropriate for a step
given the initial mesh configuration.

This approach to computing an envelope surface is ro-
bust, simple to implement (if difficult to explain), and fair
to all the vertices. It tends to maximize the minimum off-
set distance amongst the envelope vertices. It works fairly
well in practice, though there may still be some room for
improvement in generating maximal offsets for thin objects.
Figure 6 shows internal and external envelopes computed
for three values of � using this approach.

As in the analytical approach, a simple octree data struc-
ture makes these intersection tests reasonably efficient, es-
pecially for models with evenly sized triangles.

5 Generation of Approximation
Generating a surface approximation typically involves start-
ing with the input surface and iteratively making modifica-
tions to ultimately reduce its complexity. This process may
be broken into two main stages: hole creation, and hole
filling. We first create a hole by removing some connected
set of triangles from the surface mesh. Then we fill the hole
with a smaller set of triangles, resulting in some reduction
of the mesh complexity.

We demonstrate the generality of the simplification en-
velope approach by designing two algorithms. The hole
filling stages of these algorithms are quite similar, but their
hole creation stages are quite different. The first algorithm
makes only local choices, creating relatively small holes,
while the second algorithm uses global information about
the surface to create maximally-sized holes. These design
choices produce algorithms with very different properties.

We begin by describing the envelope validity test used to
determine whether a candidate triangle is valid for inclusion
in the approximation surface. We then proceed to the two
example simplification algorithms and a description of their
relative merits.

5.1 Validity Test
A candidate triangle is one which we are considering for
inclusion in an approximation to the input surface. Valid
candidate triangles must lie between the two envelopes.
Because we construct candidate triangles from the vertices
of the original model, we know its vertices lie between
the two envelopes. Therefore, it is sufficient to test the
candidate triangle for intersections with the two envelope
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Figure 6: Simplification envelopes for various �

surfaces. We can perform such tests efficiently using a
space-partitioning data structure such as an octree.

A valid candidate triangle must also not cause a self-
intersection in our surface, Therefore, it must not intersect
any triangle of the current approximation surface.

5.2 Local Algorithm
To handle large models efficiently within the framework
of simplification envelopes we construct a vertex-removal-
based local algorithm. This algorithm draws heavily on
the work of [21], [23], and [14]. Its main contributions
are the use of envelopes to provide global error bounds as
well as topology preservation and non-self-intersection. We
have also explored the use of a more exhaustive hole-filling
approach than any previous work we have seen.

The local algorithm begins by placing all vertices in
a queue for removal processing. For each vertex in the
queue, we attempt to remove it by creating a hole (remov-
ing the vertex’s adjacent triangles) and attempting to fill it.
If we can successfully fill the hole, the mesh modification
is accepted, the vertex is removed from the queue, and its
neighbors are placed back in the queue. If not, the vertex is
removed from the queue and the mesh remains unchanged.
This process terminates when the global error bounds even-
tually prevent the removal of any more vertices. Once the
vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing
all adjacent triangles. We begin the hole-filling process by
generating all possible triangles formed by combinations

of the vertices on the hole boundary. This is not strictly
necessary, but it allows us to use a greedy strategy to favor
triangles with nice aspect ratios. We fill the hole by choos-
ing a triangle, testing its validity, and recursively filling the
three (or fewer) smaller holes created by adding that trian-
gle into the hole (see figure 7). If a hole cannot be filled
at any level of the recursion, the entire hole filling attempt
is considered a failure. Note that this is a single-pass hole
filling strategy; we do not backtrack or undo selection of a
triangle chosen for filling a hole. Thus, this approach does
not guarantee that if a triangulation of a hole exists we will
find it. However, it is quite fast and works very well in
practice.

A

B C

Figure 7: Hole filling: adding a triangle into a hole creates up
to three smaller holes

We have compared the above approach with an exhaus-
tive approach in which we tried all possible hole-filling tri-
angulations. For simplifications resulting in the removal of
hundreds of vertices (like highly oversampled laser-scanned
models), the exhaustive pass yielded only a small improve-
ment over the single-pass heuristic. This sort of confirma-
tion reassures us that the single-pass heuristic works well
in practice.

5.3 Global Algorithm
This algorithm extends the algorithm presented in [3] to
non-convex surfaces. Our major contribution is the use of
simplification envelopes to bound the error on a non-convex
polygonal surface and the use of fundamental prisms to
provide a generalized projection mechanism for testing for
regions of multiple covering (overlaps). We present only a
sketch of the algorithm here ; see [24] for the full details.

We begin by generating all possible candidate triangles
for our approximation surface. These triangles are all 3-
tuples of the input vertices which do not intersect either of
the offset surfaces. Next we determine how many vertices
each triangle covers. We rank the candidate triangles in
order of decreasing covering.

We then choose from this list of candidate triangles in a
greedy fashion. For each triangle we choose, we create a
large hole in the current approximation surface, removing
all triangles which overlap this candidate triangle. Now
we begin the recursive hole-filling process by placing this
candidate triangle into the hole and filling all the subholes
with other triangles, if possible. One further restriction in
this process is that the candidate triangle we are testing
should not overlap any of the candidate triangles we have
previously accepted.

5.4 Algorithm Comparison
The local simplification algorithm is fast and robust enough
to be applied to large models. The global strategy is the-
oretically elegant. While the global algorithm works well
for small models, its complexity rises at least quadratically,
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Figure 8: Curve at local minimum of approximation

making it prohibitive for larger models. We can think of the
simplification problem as an optimization problem as well.
A purely local algorithm may get trapped in a local “min-
imum” of simplification, while an ideal global algorithm
will avoid all such minima.

Figure 8 shows a two-dimensional example of a curve for
which a local vertex removal algorithm might fail, but an
algorithm that globally searches the solutionspace will suc-
ceed in finding a valid approximation. Any of the interior
vertices we remove would cause a new edge to penetrate
an envelope curve. But if we remove all of the interior
vertices, the resulting edge is perfectly acceptable.

This observation motivates a wide range of algorithms of
which our local and global examples are the two extremes.
We can easily imagine an algorithm that chooses nearby
groups of vertices to remove simultaneously rather than
sequentially. This could potentially lead to increased speed
and simplification performance. However, choosing such
sets of vertices remains a challenging problem.

6 Additional Features

Envelope surfaces used in conjunction with simplification
algorithms are powerful, general-purpose tools. As we will
now describe, they implicitly preserve sharp edges and can
be extended to deal with bordered surfaces and perform
adaptive approximations.

6.1 Preserving Sharp Edges
One of the important properties in any approximation
scheme is the way it preserves any sharp edges or normal
discontinuities present in the input model. Simplification
envelopes deal gracefully with sharp edges (those with a
small angle between their adjacent faces). When the � tol-
erance is small, there is not enough room to simplify across
these sharp edges, so they are automatically preserved. As
the tolerance is increased, it will eventually be possible to
simplify across the edges (which should no longer be vis-
ible from the appropriate distance). Notice that it is not
necessary to explicitly recognize these sharp edges.

6.2 Bordered Surfaces
A bordered surface is one containing points that are home-
omorphic to a half-disc. For polygonal models, this corre-
sponds to edges that are adjacent to a single face rather than
two faces. Depending on the context, we may naturally
think of this as the boundary of some plane-like piece of a
surface, or a hole in an otherwise closed surface.

The algorithms described in 5 are sufficient for closed
triangle meshes, but they will not guarantee our global er-
ror bound for meshes with borders. While the envelopes
constrain our error with respect to the normal direction

of the surface, bordered surfaces require some additional
constraints to hold the approximation border close to the
original border. Without such constraints, the border of the
approximation surface may “creep in,” possibly shrinking
the surface out of existence.

In many cases, the complexity of a surface’s border
curves may become a limiting factor in how much we can
simplify the surface, so it is unacceptable to forgo simpli-
fying these borders.

We construct a set of border tubes to constrain the error
in deviation of the border curves. Each border is actually
a cyclic polyline. Intuitively speaking, a border tube is a
smooth, non-self-intersecting surface around one of these
polylines. Removing a border vertex causes a pair of border
edges to be replaced by a single border edge. If this new
border edge does not intersect the relevant border tube, we
may safely attempt to remove the border vertex.

To construct a tube we define a plane passing through
each vertex of the polyline. We choose a coordinate system
on this plane and use that to define a circular set of vertices.
We connect these vertices for consecutive planes to con-
struct our tube. Our initial tubes have a very narrow radius
to minimize the likelihood of self-intersections. We then
expand these narrow tubes using the same technique we
used previously to construct our simplification envelopes.

The difficult task is to define a coordinate system at
each polyline vertex which encourages smooth, non-self-
intersecting tubes. The most obvious approach might be to
use the idea of Frenet frames from differential geometry to
define a set of coordinate systems for the polyline vertices.
However, Frenet frames are meant for smooth curves. For
a jagged polyline, a tube so constructed often has many
self-intersections.

Instead, we use a projection method to minimize the
twist between consecutive frames. Like the Frenet frame
method, we place the plane at each vertex so that the normal
to the plane approximates the tangent to the polyline. This
is called the normal plane.

At the first vertex, we choose an arbitrary orthogonal pair
of axes for our coordinate system in the normal plane. For
subsequent vertices, we project the coordinate system from
the previous normal plane onto the current normal frame.
We then orthogonalize this projected coordinate system in
the plane. For the normal plane of the final polyline vertex,
we average the projected coordinate systems of the previous
normal plane and the initial normal plane to minimize any
twist in the final tube segment.

6.3 Adaptive Approximation
For certain classes of objects it is desirable to perform an
adaptive approximation. For instance, consider large ter-
rain datasets, models of spaceships, or submarines. One
would like to have more detail near the observer and less
detail further away. A possible solution could be to sub-
divide the model into various spatial cells and use a dif-
ferent �-approximation for each cell. However, problems
would arise at the boundaries of such cells where the �-
approximation for one cell, say at a value �1 need not nec-
essarily be continuous with the �-approximation for the
neighboring cell, say at a different value �2.

Since all candidate triangles generated are constrained
to lie within the two envelopes, manipulation of these en-
velopes provides one way to smoothly control the level of
approximation. Thus, one could specify the � at a given
vertex to be a function of its distance from the observer —
the larger the distance, the greater is the �.

As another possibility, consider the case where certain



features of a model are very important and are not to be
approximated beyond a certain level. Such features might
have human perception as a basis for their definition or
they might have mathematical descriptions such as regions
of high curvature. In either case, a user can vary the �
associated with a region to increase or decrease the level of
approximation. The bunny in Figure 9 illustrates such an
approximation.

Figure 9: An adaptive simplification for the bunny model.
� varies from 1/64% at the nose to 1% at the tail.

7 Implementation and Results

We have implemented both algorithms and tried out the
local algorithm on several thousand objects. We will first
discuss some of the implementation issues and then present
some results.

7.1 Implementation Issues

The first important implementation issue is what sort of
input model to accept. We chose to accept only manifold
triangle meshes (or bordered manifolds). This means that
each edge is adjacent to two (one in the case of a border)
triangles and that each vertex is surrounded by a single ring
of triangles.

We also do not accept other forms of degenerate meshes.
Many mesh degeneracies are not apparent on casual in-
spection, so we have implemented an automatic degener-
acy detection program. This program detects non-manifold
vertices, non-manifold edges, sliver triangles, coincident
triangles, T-junctions, and intersecting triangles in a pro-
posed input mesh. Note that correcting these degeneracies
is more difficult than detecting them.

Robustness issues are important for implementations of
any geometric algorithms. For instance, the analytical
method for envelope computation involves the use of bi-
linear patches and the computation of intersection points.

The computation of intersection points, even for linear el-
ements, is difficult to perform robustly. The numerical
method for envelope computation is much more robust be-
cause it involves only linear elements. Furthermore, it
requires an intersection test but not the calculation of inter-
section points. We perform all such intersection tests in a
conservative manner, using fuzzy intersection tests that may
report intersections even for some close but non-intersecting
elements.

Another important issue is the use of a space-partitioning
scheme to speed up intersection tests. We chose to use an
octree because of its simplicity. Our current octree im-
plementation deals only with the bounding boxes of the
elements stored. This works well for models with trian-
gles that are evenly sized and shaped. For CAD models,
which may contain long, skinny, non-axis-aligned triangles,
a simple octree does not always provide enough of a speed-
up, and it may be necessary to choose a more appropriate
space-partitioning scheme.

7.2 Results

We have simplified a total of 2636 objects from the auxiliary
machine room (AMR) of a submarine dataset, pictured in
Figure 10 to test and validate our algorithm. We reproduce
the timings and simplifications achieved by our implemen-
tation for the AMR and a few other models in Table 1.
All simplifications were performed on a Hewlett-Packard
735/125 with 80 MB of main memory. Images of these
simplifications appear in Figures 11 and 12. It is interest-
ing to compare the results on the bunny and phone models
with those of [7, 8]. For the same error bound, we are able
to obtain much improved solutions.

We have automated the process which sets the � value
for each object by assigning it to be a percentage of the
diagonal of its bounding box. We obtained the reductions
presented in Table 1 for the AMR and Figures 11 and 12 by
using this heuristic.

For the rotor and AMR models in the above results, the
ith level of detail was obtained by simplifying the i � 1th
level of detail. This causes to total � to be the sum of
all previous �’s, so choosing �0s of 1, 2, 4, and 8 percent
results in total �0s of 1, 3, 7, and 15 percent. There are two
advantages to this scheme:
(a) It allows one to proceed incrementally, taking advantage
of the work done in previous simplifications.
(b) It builds a hierarchy of detail in which the vertices at the
ith level of detail are a subset of the vertices at the i � 1th
level of detail.

One of the advantages of the setting � to a percent of
the object size is that it provides an a way to automate
the selection of switching points used to transition between
the various representations. To eliminate visual artifacts,
we switch to a more faithful representation of an object
when � projects to more than some user-specified number
of pixels on the screen. This is a function of the � for
that approximation, the output display resolution, and the
corresponding maximum tolerable visible error in pixels.

8 Future Work

There are still several areas to be explored in this research.
We believe the most important of these to be the generation
of correspondences between levels of detail and the moving
of vertices within the envelope volume.



Bunny Phone Rotor AMR
� % # Polys Time � % # Polys Time � % # Polys Time � % # Polys Time

0 69,451 N/A 0 165,936 N/A 0 4,735 N/A 0 436,402 N/A
1=64 44,621 9 1=64 43,537 31 1=8 2,146 3 1 195,446 171
1=32 23,581 10 1=32 12,364 35 1=4 1,514 2 3 143,728 61
1=16 10,793 11 1=16 4,891 38 3=4 1,266 2 7 110,090 61
1=8 4,838 11 1=8 2,201 32 1 3=4 850 1 15 87,476 68
1=4 2,204 11 1=4 1,032 35 3 3=4 716 1 31 75,434 84
1=2 1,004 11 1=2 544 33 7 3=4 688 1

1 575 11 1 412 30 15 3=4 674 1

Table 1: Simplification �’s and run times in minutes

8.1 Generating Correspondences
A true geometric hierarchy should contain not only repre-
sentations of an object at various levels of detail, but also
some correspondence information about the relationship
between adjacent levels. These relationships are neces-
sary for propagating local information from one level to the
next. For instance, this information would be helpful for
using the hierarchical geometric representation to perform
radiosity calculations. It is also necessary for performing
geometric interpolation between the models when using the
levels of detail for rendering. Note that the envelope tech-
nique preserves silhouettes when rendering, so it is also a
good candidate for alpha blending rather than geometric
interpolation to smooth out transitions between levels of
detail.

We can determine which elements of a higher level of
detail surface are covered by an element of a lower level of
detail representation by noting which fundamental prisms
this element intersects. This is non-trivial only because
of the bilinear patches that are the sides of a fundamental
prism. We can approximate these patches by two or more
triangles and then tetrahedralize each prism. Given this
tetrahedralization of the envelope volume, it is possible to
stab each edge of the lower level-of-detail model through
the tetrahedrons to determine which ones they intersect,
and thus which triangles are covered by each lower level-
of-detail triangle.

8.2 Moving Vertices
The output mesh generated by either of the algorithms we
have presented has the property that its set of vertices is
a subset of the set of vertices of the original mesh. If we
can afford to relax this constraint somewhat, we may be
able to reduce the output size even further. If we allow the
vertices to slide along their normal vectors, we should be
able to simplify parts of the surface that might otherwise
be impossible to simplify for some choices of epsilon. We
are currently working on a goal-based approach to mov-
ing vertices within the envelope volume. For each vertex
we want to remove, we slide its neighboring vertices along
their normals to make them lie as closely as possible to a
tangent plane of the original vertex. Intuitively, this should
increase the likelihood of successfully removing the vertex.
During this whole process, we must ensure that none of
the neighboring triangles ever violates the envelopes. This
approach should make it possible to simplify surfaces using
smaller epsilons than previously possible. In fact, it may
even enable us to use the original surface and a single en-
velope as our constraint surfaces rather than two envelopes.
This is important for objects with areas of high maximal
curvature, like thin cylinders.

9 Conclusion

We have outlined the notion of simplification envelopes and
how they can be used for generation of multiresolution hi-
erarchies for polygonal objects. Our approach guarantees
non-self-intersecting approximations and allows the user
to do adaptive approximations by simply editing the sim-
plification envelopes (either manually or automatically) in
the regions of interest. It allows for a global error toler-
ance, preservation of the input genus of the object, and
preservation of sharp edges. Our approach requires only
one user-specifiable parameter, allowing it to work on large
collections of objects with no manual intervention if so de-
sired. It is rotationallyand translationally invariant, and can
elegantly handle holes and bordered surfaces through the
use of cylindrical tubes. Simplification envelopes are gen-
eral enough to permit both simplification algorithms with
good theoretical properties such as our global algorithm, as
well as fast, practical, and robust implementations like our
local algorithm. Additionally, envelopes permit easy gen-
eration of correspondences across several levels of detail.
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Figure 10: Looking down into the auxiliary machine room
(AMR) of a submarine model. This model contains nearly 3,000
objects, for a total of over half a million triangles. We have sim-
plified over 2,600 of these objects, for a total of over 430,000
triangles.

Figure 11: An array of batteries from the AMR. All parts but the
red are simplified representations. At full resolution, this array
requires 87,000 triangles. At this distance, allowing 4 pixels of
error in screen space, we have reduced it to 45,000 triangles.



(a) bunny model: 69,451 triangles (e) phone model: 165,936 triangles (i) rotor model: 4,736 triangles

(b) � = 1=16%, 10; 793 triangles (f) � = 1=32%, 12; 364 triangles (j) � = 1=8%, 2; 146 triangles

(c) � = 1=4%, 2; 204 triangles (g) � = 1=16%, 4; 891 triangles (k) � = 3=4%, 1; 266 triangles

(d) � = 1%, 575 triangles (h) � = 1%, 412 triangles (l) � = 3 3=4%, 716 triangles

Figure 12: Level-of-detail hierarchies for three models. The approximation distance, �, is taken as a percentage of the bounding box
diagonal.
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